METU NCC, CNG 242 Programming Language Concepts
 Spring 2010, Haskell Quiz

Open Book and notes, 50 minutes, 50 points, ?? questions, ?? pages

Name, Surname: \qquad Id: \qquad
QUESTION 1. (15 points)
What are the values of the following Haskell expressions:

```
let x = 3
    y = 2
    z = 1
in let x = 1
    in x+y+z
let x = 3
    y = 2
    z = 1
in let y = 1
    in x+let x=5
        in }x+y+
\(\square\)
let f x = x+1
        g x = x*2
in f (let f x = x*x in g(f 3)) +f 1
\(\square\)
let tk n (x:xs) | n==0 = []
    | otherwise = x:(tk (n-1) xs)
in tk 3 [1,5,2,3,4,0,1]
```



```
let mg a [] = a
    mg [] a = a
    mg (x:xs) (y:ys) = if x<y then x:(mg xs (y:ys))
                                else y:(mg (x:xs) ys)
in mg [1,5,4] [3,2]
```



```
let \(m n \times=\) case \(x\) of
[] -> \(\mathrm{n}==0\)
( \(\quad: r)->m(n-1) r\)
in \(m 3[1,2,3,4,5]\) \(\square\)
```

QUESTION 2. (20pts)
Assume the following function definitions exist:

```
nmap f [] = []
nmap f (x:xs) = (f x):(nmap f xs)
nfilter f [] = []
nfilter f (x:xs) = if (f x) then (x:(nfilter f xs))
    else (nfilter f xs)
reduce f s [] = s
reduce f s (x:xs) = f x (reduce f s xs)
for m n f s = if (m>n) then s
    else for (m+1) n f (f m s)
comp f g x y = f x (g x y)
iter 0 f s = s
iter n f s = iter (n-1) f (f s)
zpt a [] = [a]
zpt a (x:xs) = if a>x then a:(x:xs)
else x:(zpt a xs)
```

What are the values of the following expressions?:
nmap even $[1,2,3,4,5,6]$

nmap ((+) 2) (nfilter even $[1,2,3,4,5,6])$

iter $10((*) 2) 4$

reduce zpt [] [1, 3, 4, 2, 3, 1]

for $10 \quad 13 \mathrm{zpt}$ [] \square
reduce (comp (*) (+)) 1 [1,2,3] \square

QUESTION 3. (15 points)
a) Complete the following function to return number of occurences of the first parameter in the second parameter list. occurs 1 [1,2,3,1,2] will return 2 since 1 has 2 occurrences in the list. occurs 3 [1,2,3,1,2] will return 1 and occurs $4[1,2,3,1,2]$ will return 0 .

```
occurs _ [] = 0
occurs a (x:xs) = let rest=occurs a xs
    in if a==x then
        else
        \square
```

b) Complete the following function to return number of occurences of the first parameter in the nodes of the second parameter tree. The definition of tree is given below. In the sample tree t the calls return the corressponding values:

```
occurst 1 t }->
occurst 2 t }->
occurst 3 t }->
occurst 4t}->
```

data Tree a = Node (a, Tree a, Tree a) | Empty deriving Show
occurst - Empty = 0
occurst a (Node (x, left, right)) =
$\mathrm{t}=\operatorname{Node}(3, \operatorname{Node}(2, \operatorname{Node}(1$, Empty, Empty), Node (1, Empty, Empty)),
Node (1, Node (2,Node (1, Empty, Empty), Node (1, Empty, Empty)),
Node (1, Empty, Empty)))

