
Programming Language Concepts/Binding and Scope

Programming Language Concepts/Binding and

Scope

Onur Tolga Şehitoğlu

Bilgisayar Mühendisliği

11 Mart 2008

Programming Language Concepts/Binding and Scope

Outline

1 Binding
2 Environment
3 Block Structure

Monolithic block structure
Flat block structure
Nested block structure

4 Hiding
5 Static vs Dynamic Scope/Binding

Static binding
Dynamic binding

6 Declarations
Definitions and Declarations
Sequential Declarations
Collateral Declarations
Recursive declarations
Recursive Collateral Declarations
Block Expressions
Block Commands
Block Declarations

7 Summary

Programming Language Concepts/Binding and Scope

Binding

Binding

Most important feature of high level languages: programmers
able to give names to program entities (variable, constant,
function, type, ...). These names are called identifiers.

definition of an identifier ⇆ used position of an identifier.
Formally: binding occurrence ⇆ applied occurrence.

Identifiers are declared once, used n times.

Language should map which corresponds to which.

Binding: Finding the corresponding binding occurrence
(definition/declaration) for an applied occurrence (usage) of
an identifier.

Programming Language Concepts/Binding and Scope

Binding

for binding:

1 Scope of identifiers should be known. What is the block
structure? Which blocks the identifier is available.

2 What will happen if we use same identifier name again
“C forbids reuse of same identifier name in the same scope.
Same name can be used in different nested blocks. The
identifier inside hides the outside identifier”.

double f ,y;
int f () { × error!

...

}

double y; × error!

double y;
int f () {

double f ;
√

OK

int y ;
√

OK.

}

Programming Language Concepts/Binding and Scope

Environment

Environment

Environment: The set of binding occurrences that are
accessible at a point in the program.

Example:

struct Person { ... } x;
int f (int a) {

double y;
int x;
... ©1

}

int main() {

double a;
... ©2

}

O(©1)={struct People 7→ type, x 7→
int,
f 7→ func, a 7→ int, y 7→ double}

O(©2)={struct People 7→ type,
x 7→ struct People, f 7→ func, a 7→
double,
main 7→ func}

Programming Language Concepts/Binding and Scope

Block Structure

Block Structure

Program blocks define the scope of the identifiers declared
inside. (boundary of the definition validity) For variables, they
also define the lifetime.

Languages may have different block structures:

C function definitions and command blocks ({ ... }) define local
scopes. Also each source code define a block.

Java Class definitions, class member function definitions, block
commands define local scopes. Nested function definitions and
namespaces possible.

Haskell ‘let definitions in expression ’ defines a block
expression. Also ‘ expression where definitions ’
defines a block expression. (the definitions have a local scope
and not accessible outside of the expression)

Block structure of the language is defined by the organization
of the blocks.

Programming Language Concepts/Binding and Scope

Block Structure

Monolithic block structure

Monolithic block structure

Whole program is a block. All identifiers have global scope
starting from the definition.

Cobol is a monolithic block structure language.
int x;

int y;

....

....

In a long program with many identifiers, they share the same
scope and they need to be distinct.

Programming Language Concepts/Binding and Scope

Block Structure

Flat block structure

Flat block structure

Program contains the global scope and only a single level local
scope of function definitions. No further nesting is possible.

Fortran and partially C has flat block structure.
int x;

int y;

int f()

{ int a;

double b;

...

}
int g()

{ int a;

double b;

...

}
....

Programming Language Concepts/Binding and Scope

Block Structure

Nested block structure

Nested block structure

Multiple blocks with nested local scopes can be defined.

Pascal and Java have nested block structure.
int x;

int f()

{ int a;

double g()

{ int x;

...

}
...

}
int g()

{ int h()

{ int x;

...

}
...

}
....

C block commands can be nested.

GCC extensions to C allow nested function definitions.

Programming Language Concepts/Binding and Scope

Hiding

Hiding

Identifiers defined in the inner local block hides the outer
block identifiers with the same name during their scope. They
cannot be accessed within the inner block.

int x,y;
int f (double x) {

... // parameter x hides global x in f()

}

int g(double a) {

int y; // local y hides global y in g()

double f ; // local f hides global f() in g()

...

}

int main() {

int y; // local y hides global y in main ()

}

Programming Language Concepts/Binding and Scope

Static vs Dynamic Scope/Binding

Static vs Dynamic Scope/Binding

The binding and scope resolution is done at compile time or run
time? Two options:

1 Static binding, static scope

2 Dynamic binding, dynamic scope

First defines scope and binding based on the lexical structure
of the program and binding is done at compile time.

Second activates the definitions in a block during the
execution of the block. The environment changes dynamically
at run time as functions are called and returned.

Programming Language Concepts/Binding and Scope

Static vs Dynamic Scope/Binding

Static binding

Static binding

Programs shape is significant. Environment is based on the
position in the source (lexical scope)
Most languages apply static binding (C, Haskell, Pascal, Java,
...)

int x=1,y=2;

int f (int y) {

y=x+y; /* x global , y local */

return x+y;

}

int g(int a) {

int x=3; /* x local , y global */

y=x+x+a; x=x+y; y= f (x);
return x;

}

int main() {

int y=0; int a=10; /* x global y local */

x=a+y; y=x+a; a= f (a); a=g(a);
return 0;

}

Programming Language Concepts/Binding and Scope

Static vs Dynamic Scope/Binding

Dynamic binding

Dynamic binding

Functions called update their declarations on the environment
at run-time. Delete them on return. Current stack of
activated blocks is significant in binding.

Lisp and some script languages apply dynamic binding.

1 int x=1,y=2;
2 int f (int y) {

3 y=x+y;
4 return x+y;
5 }

6 int g(int a) {

7 int x=3;
8 y=x+x+a; x=x+y;
9 y= f (x);

10 return x;
11 }

12 int main() {

13 int y=0; int a=10;
14 x=a+y; y=x+a;
15 a= f (a); a=g(a);
16 return 0;

17 }

Trace Environment
initial {x:gl, y:gl}

12 call main {x:gl, y:main, a:main, main()}

15 call f(10) {x:gl, y:f , a:main, main(), f()}

4 return f : 30 back to environment before f
15 in main {x:gl, y:main, a:main, main()}

15 call g(30) {x:g, y:main, a:g, main(), g() }

9 call f(39) {x:g, y:f, a:g, main(), g(), f() }

4 return f : 117 back to environment before f

9 in g {x:g, y:main, a:g, main(), g() }

10 return g : 39 back to environment before g
15 in main {x:gl, y:main, a:main, main()}
16 return main x:gl=10, y:gl=2, y:main=117, a:main=39

Programming Language Concepts/Binding and Scope

Declarations

Declarations

Definitions vs Declarations

Sequential declarations

Collateral declarations

Recursive declarations

Collateral recursive declarations

Block commands

Block expressions

Programming Language Concepts/Binding and Scope

Declarations

Definitions and Declarations

Definitions and Declarations

Definition: Creating a new name for an existing binding.

Declaration: Creating a completely new binding.

in C: struct Person is a declaration. typedef struct

Person persontype is a definition.

in C++: double x is a declaration. double &y=x; is a
definition.

creating a new entity or not. Usually the distinction is not
clear and used interchangeably.

Programming Language Concepts/Binding and Scope

Declarations

Sequential Declarations

Sequential Declarations

D1 ; D2 ; ... ; Dn

Each declaration is available starting with the next line. D1

can be used in D2 an afterwards, D2 can be used in D3 and
afterwards,...

Declared identifier is not available in preceding declarations.

Most programming languages provide only such declarations.

Programming Language Concepts/Binding and Scope

Declarations

Collateral Declarations

Collateral Declarations

Start; D1 and D2 and ... and Tn ; End

Each declaration is evaluated in the environment preceding
the declaration group. Declared identifiers are available only
after all finishes. D1,... Dn uses in the environment of Start.
They are in the available in the environment of End.

ML allows collateral declarations additionally.

Programming Language Concepts/Binding and Scope

Declarations

Recursive declarations

Recursive declarations

Declaration:Name = Body

The body of the declaration can access the declared identifier.
Declaration is available in the body of itself.

C functions and type declarations are recursive. Variable
definitions are usually not recursive. ML allows programmer to
choose among recursive and non-recursive function definitions.

Programming Language Concepts/Binding and Scope

Declarations

Recursive Collateral Declarations

Recursive Collateral Declarations

All declarations can access the others regardless of their order.

All Haskell declarations are recursive collateral (including
variables)

All declarations are mutually recursive.

ML allows programmer to do such definitions.

C++ class members are like this.

in C a similar functionality can be access by prototype
definitions.

Programming Language Concepts/Binding and Scope

Declarations

Block Expressions

Block Expressions

Allows an expression to be evaluated in a special local
environment. Declarations done in the block is not available
outside.

in Haskell: let D1; D2; ... ; Dn in Expression or
Expression where D1; D2; ... ; Dn

x=5
t =let x squa r e =x*x

f a c t o r i a l n = if n<2 then 1 else n* f a c t o r i a l (n-1)
x f a c t = f a c t o r i a l x

in (x squa r e +1)* x f a c t /(x f a c t * x squa r e +2)

Programming Language Concepts/Binding and Scope

Declarations

Block Expressions

Hiding works in block expressions as expected:

x=5 ; y=6 ; z = 3

t =let x=1
in let y=2

in x+y+ z
{-- t is 1+2+3 here. local x and y hides the ones above --}

Programming Language Concepts/Binding and Scope

Declarations

Block Commands

Block Commands

Similar to block expressions, declarations done inside a block
command is available only during the block. Statements
inside work in this environment. The declarations lost outside
of the block.

int x=3, i =2;
x+= i ;
while (x> i) {

int i =0;
...

i ++;
}

/* i is 2 again */

Programming Language Concepts/Binding and Scope

Declarations

Block Declarations

Block Declarations

A declaration is made in a local environment of declarations.
Local declarations are not made available to the outer
environment.

in Haskell: Dexp where D1; D2; ... ; Dn

Only Dexp is added to environment. Body of Dexp has all local
declarations available in its environment.

f i f t h p ow e r x = (f o r t hpowe r x) * x where

squa r ex = x*x
f o r t hpowe r x = squa r ex * squa r ex

Programming Language Concepts/Binding and Scope

Summary

Summary

Binding, scope, environment

Block structure

Hiding

Static vs Dynamic binding

Declarations

Sequential, recursive, collateral

Expression, command and declaration blocks

	Binding
	Environment
	Block Structure
	Monolithic block structure
	Flat block structure
	Nested block structure

	Hiding
	Static vs Dynamic Scope/Binding
	Static binding
	Dynamic binding

	Declarations
	Definitions and Declarations
	Sequential Declarations
	Collateral Declarations
	Recursive declarations
	Recursive Collateral Declarations
	Block Expressions
	Block Commands
	Block Declarations

	Summary

