
Programming Languages:Control Flow

Programming Languages:

Control Flow

Onur Tolga Şehitoğlu
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Control Flow

Control Flow

Usual control flow: a command followed by the other.
Executed in sequence. single entrance - single exit

Commands to change control flow and transfer execution to
another point: sequencers

Jumps
Escapes
Exceptions
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Jumps

Jumps

Jumps transfer control to a point in the code. The destination
is marked with labels

When jumps to arbitrary positions are possible:

L1: x++;

if (x >10) goto L2;

j ++;

for ( i =0; i < j ; j ++) {

x=x*2;

L2: if (x >1000) goto L3;

else goto L1;

}

L3: p r i n t f ("out\n");

Called spaghetti coding
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Jumps

Unrestricted jumps ⇒ spaghetti coding.

Dream of a PL where labels are first order values. ῭©

Further problems. Which jumps have problems?:

L1: ....

goto L2; ©1

....

for ( i =0; i <10; i ++) {

int x= t ;

L2: ....

goto L1; ©2

...

goto L2: ©3

}

Lifetime and values of local variables? Values of index
variables?

C: Labels are local to enclosing block. No jumps allowed into
the block. Newer languages avoid jumps.

Single entrance multiple exit is still desirable.→ escapes
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Escapes

Escapes

Restricted jumps to out of textually enclosing block(s)

Depending on which enclosing block to jump out of:

loop: break sequencer.
loops: exit sequencer.
function: return sequencer.
program: halt sequencer.
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Escapes

break sequencer in C, C++, Java terminates the innermost
enclosing loop block.

continue in C, C++ stays in the same block but ends current
iteration.

exit sequencer in Ada or labeled break in Java can terminate
multiple levels of blocks by specifying labels. Java code:

L1: for ( i =0; i <10; i ++) {

for ( j = i ; j < i ; j ++) {

if (...) break;

else if (...) continue;

else if (...) break L1;

else if (...) continue L1;

s += i * j ;

}

}
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Escapes

return sequencer exist in most languages for terminating the
innermost function block.

halt sequencer either provided by operating system or PL
terminates the program.

Consider jump inside of a block or jump out of a block for the
function case:

int f (int n) {

int a;

L1: if (n<0) goto L2; ©1

else if (n=1) return 1;

else return f (n-1)*n;

}

int main() {

...

f (12);

L2: ....

goto L1: ©2

}
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Escapes

Jump out of a function block, jump inside of a function block

Activation record, run-time stack? Possible only for one
direction if stack position can be recovered.

Non-local jumps

unexpected error occuring inside of many levels of recursion.
Jump to the outer-most related caller function. Exceptions
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Exceptions

Exceptions

Controlled jumps out of multiple levels of function calls to an
outer control point (handler or catch)

C does not have exceptions but non-local jumps possible via
setjmp(), longjmp() library calls.

C++ and Java: try {...} catch(...) {...}

Each try-catch block introduces a non-local jump point.
try block is executed and whenever a throw expr command
is called in any functions called (even indirectly) inside try

block execution jumps to the catch() part.

try-catch blocks can be nested. Execution jumps to closes
catch block with a matching type in the parameters with the
thrown expression.
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Exceptions

Conventional error handling. Propagate errors with return
values.

...

int s ea r chopen (char * f ) { ...

/* if search fails error occurs here*/

return -5;

...}

int openpa r se (char * f ) { ...

if (( r = s ea r chopen ( f ))<0)

return r ;

else ...

}

int main() { ...

if (( r v = openpa r se ("file.txt"))<0) {

/*handle error here */

...

}
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Exceptions

Error handling with try-catch. (based on run-time stack)

...

enum Excep t i on { NOTFOUND, ..., PERMS};

void s ea r chopen (char * f ) { ...

/* if open fails error occurs here*/

throw PERMS;

...}

void openpa r se (char * f ) { ...

s ea r chopen ( f );

...

}

int main() { ...

try {...

openpa r se ("file.txt");

...

} catch( Excep t i on e) {

/*handle error here */

}

...

}
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Exceptions

Nested exceptions are handled based on types. C++:

int main() {... try { C1; f() ; C2 } catch (double a) {...}}

void f() {...; try {...; g() ; ... } catch (int a) { ...} }

void g() {...; throw 4; ... ; throw 1.5; ...}

call

call exception

exception

In case no handlers found a run time error generated. Program
halts.


	Control Flow
	Jumps
	Escapes
	Exceptions

