
Programming Languages:Control Flow

Programming Languages:

Control Flow

Onur Tolga Şehitoğlu

Computer Engineering,METU

3 April 2008

Programming Languages:Control Flow

1 Control Flow

2 Jumps

3 Escapes

4 Exceptions

Programming Languages:Control Flow

Control Flow

Control Flow

Usual control flow: a command followed by the other.
Executed in sequence. single entrance - single exit

Commands to change control flow and transfer execution to
another point: sequencers

Jumps
Escapes
Exceptions

Programming Languages:Control Flow

Jumps

Jumps

Jumps transfer control to a point in the code. The destination
is marked with labels

When jumps to arbitrary positions are possible:

L1: x++;

if (x >10) goto L2;

j ++;

for (i =0; i < j ; j ++) {

x=x*2;

L2: if (x >1000) goto L3;

else goto L1;

}

L3: p r i n t f ("out\n");

Called spaghetti coding

Programming Languages:Control Flow

Jumps

Unrestricted jumps ⇒ spaghetti coding.

Dream of a PL where labels are first order values. ῭©

Further problems. Which jumps have problems?:

L1:

goto L2; ©1

....

for (i =0; i <10; i ++) {

int x= t ;

L2:

goto L1; ©2

...

goto L2: ©3

}

Lifetime and values of local variables? Values of index
variables?

C: Labels are local to enclosing block. No jumps allowed into
the block. Newer languages avoid jumps.

Single entrance multiple exit is still desirable.→ escapes

Programming Languages:Control Flow

Escapes

Escapes

Restricted jumps to out of textually enclosing block(s)

Depending on which enclosing block to jump out of:

loop: break sequencer.
loops: exit sequencer.
function: return sequencer.
program: halt sequencer.

Programming Languages:Control Flow

Escapes

break sequencer in C, C++, Java terminates the innermost
enclosing loop block.

continue in C, C++ stays in the same block but ends current
iteration.

exit sequencer in Ada or labeled break in Java can terminate
multiple levels of blocks by specifying labels. Java code:

L1: for (i =0; i <10; i ++) {

for (j = i ; j < i ; j ++) {

if (...) break;

else if (...) continue;

else if (...) break L1;

else if (...) continue L1;

s += i * j ;

}

}

Programming Languages:Control Flow

Escapes

return sequencer exist in most languages for terminating the
innermost function block.

halt sequencer either provided by operating system or PL
terminates the program.

Consider jump inside of a block or jump out of a block for the
function case:

int f (int n) {

int a;

L1: if (n<0) goto L2; ©1

else if (n=1) return 1;

else return f (n-1)*n;

}

int main() {

...

f (12);

L2:

goto L1: ©2

}

Programming Languages:Control Flow

Escapes

Jump out of a function block, jump inside of a function block

Activation record, run-time stack? Possible only for one
direction if stack position can be recovered.

Non-local jumps

unexpected error occuring inside of many levels of recursion.
Jump to the outer-most related caller function. Exceptions

Programming Languages:Control Flow

Exceptions

Exceptions

Controlled jumps out of multiple levels of function calls to an
outer control point (handler or catch)

C does not have exceptions but non-local jumps possible via
setjmp(), longjmp() library calls.

C++ and Java: try {...} catch(...) {...}

Each try-catch block introduces a non-local jump point.
try block is executed and whenever a throw expr command
is called in any functions called (even indirectly) inside try

block execution jumps to the catch() part.

try-catch blocks can be nested. Execution jumps to closes
catch block with a matching type in the parameters with the
thrown expression.

Programming Languages:Control Flow

Exceptions

Conventional error handling. Propagate errors with return
values.

...

int s ea r chopen (char * f) { ...

/* if search fails error occurs here*/

return -5;

...}

int openpa r se (char * f) { ...

if ((r = s ea r chopen (f))<0)

return r ;

else ...

}

int main() { ...

if ((r v = openpa r se ("file.txt"))<0) {

/*handle error here */

...

}

Programming Languages:Control Flow

Exceptions

Error handling with try-catch. (based on run-time stack)

...

enum Excep t i on { NOTFOUND, ..., PERMS};

void s ea r chopen (char * f) { ...

/* if open fails error occurs here*/

throw PERMS;

...}

void openpa r se (char * f) { ...

s ea r chopen (f);

...

}

int main() { ...

try {...

openpa r se ("file.txt");

...

} catch(Excep t i on e) {

/*handle error here */

}

...

}

Programming Languages:Control Flow

Exceptions

Nested exceptions are handled based on types. C++:

int main() {... try { C1; f() ; C2 } catch (double a) {...}}

void f() {...; try {...; g() ; ... } catch (int a) { ...} }

void g() {...; throw 4; ... ; throw 1.5; ...}

call

call exception

exception

In case no handlers found a run time error generated. Program
halts.

	Control Flow
	Jumps
	Escapes
	Exceptions

