Programming Languages:Encapsulation

Programming Languages:

Encapsulation

Onur Tolga Sehitoglu
Computer Engineering

20 March 2008

Programming Languages:Encapsulation

Encapsulation

=

]

Packages

&

Hiding

-~

Abstract Data Types

&

Class and Object
m Object
m Class

Programming Languages:Encapsulation

L Encapsulation

Encapsulation

Managing the complexity — Re-usable code and abstraction.

Example:
50 lines no abstraction is essential, all in main()
500 lines function /procedure abstraction sufficient
5,000 lines function groups forming modules, mod-

ules are combined to form the application

500,000 lines heavy abstraction and modularization, all
parts designed for reuse (libraries, com-
ponents etc)

Programming Languages:Encapsulation

L Encapsulation

Modularization and Encapsulation

m Building an independent and self complete set of function and
variable declarations (Packaging)

m Restricting access to this set only via a set of interface
function and variables. (Hiding and Encapsulation)
/

\%

inte’rface

other application

detail<arerons, *

variables, algorithm)

Programming Languages:Encapsulation

L Encapsulation

Advantages of Encapsulation

m High volume details reduced to interface definitions (Ease of
development/maintenance)

m Many different applications use the same module via the same
interface (Code re-usability)

m Lego like development of code with building blocks (Ease of
development/maintenance)

m Even details change, applications do not change (as long as
interface is kept same) (Ease of development/maintenance)

m Module can be used in following projects (Code re-usability)

Programming Languages:Encapsulation
LPackages

m A group of declarations put into a single body.
m C has indirect way of packaging per source file.

m C++

namespace Trig {
const double pi=3.14159265358979;

double sin (double x) { ... }
double cos(double x) { ... }
double tan(double x) { ... }
double atan(double x) { ... }

g

m Trig::sin(Trig: :pi/2+x)+Trig: :cos(x)
m C++: (i) Scope operator.

m Identifier overlap is avoided. List::insert(...) ve
Tree: :insert(...) no name collisions.

Programming Languages:Encapsulation
L Hiding

Hiding

m A group of functions and variables hidden inside. The others

are interface. Abstraction inside of a package:
double taylorseries(double);
double sin(double x);
double pi=3.14159265358979;
double randomseed;
double cos(double x);
double errorcorrect(double x);

module Trig(sin,pi,cos) where
taylorseries x =
sin x = ...
pi=3.14159265358979
randomseed=
cos x = .
errorcorrect x =

Programming Languages:Encapsulation
LAbstract Data Types

Abstract data types

m Internals of the datatype is hidden and only interface
functions provide the access.

m Example: rational numbers: 3/4 , 2/5, 19/3
data Rational = Rat (Integer,Integer)
x = Rat (3,4)
add (Rat(a,b)) (Rat(c,d)) = Rat (a*d+b*xc,b*d)

Invalid value? Rat (3,0)
Multiple representations of the same value?
Rat (2,4) = Rat (1,2) = Rat(3,6)

m Solution: avoid arbitrary values by the user.

Programming Languages:Encapsulation

LAbstract Data Types

Main purpose of abstrac data types is to use them transparently
(as if they were built-in) without loosing data integrity.

module Rational (Rational,rat,add,subtract,multiply,divide) where

data Rational = Rat (Integer,Integer)
rat (x,y) = simplify (Rat(x,y))
add (Rat(a,b)) (Rat(c,d)) = rat (axd+b*c,bx*d)
subtract (Rat(a,b)) (Rat(c,d)) = rat (axd-bx*c,bx*d)
multiply (Rat(a,b)) (Rat(c,d)) = rat (ax*c,bxd)
divide (Rat(a,b)) (Rat(c,d)) = rat (ax*d,bx*c)
ged x y = if (x==0) then y

else if (y==0) then x

else if (x<y) then gecd x (y-x)

else gcd y (x-y)
simplify (Rat(x,y)) = if y==0 then Rat(div x y,1)

else let a=gcd x y
in Rat(div x a, div y a)

Initial value? We need constructor function/values. (remember we
don’t have the data definition)
rat (x,y) instead of Rat (x,y)

Programming Languages:Encapsulation
L Class and Object
L Object
)

Object

m Packages containing hidden variables and access is restricted
to interface functions.

m Variables with state

m Data integrity and abstraction provided by the interface
functions.

m Entities in software can be modelled in terms of functions
(server, customer record, document content, etc). Object
oriented design.

m Example (invalid syntax! imaginary C++)

namespace Counter {

private: int counter=0;

public: int get() { return counter;}
public: void increment() { counter++; }
i

Counter::get () Counter::increment ()

Programming Languages:Encapsulation
L Class and Object
L Class

Class

m The set of same typed objects form a class

m An object is an instance of the class that it belongs to (a
counter type instead of a single counter)

m Classes have similar purposes to abstract data types
m Some languages allows both objects and classes
m C++ class declaration (valid syntax):

class Counter {
private: int counter;
public: Counter() { counter=0; }
int get() { return counter;}
void increment () { counter++; }
} men,vehicles;
men.increment (); vehicles.increment ();
men.get (); vehicles.get();

Programming Languages:Encapsulation
L Class and Object

L Class

Abstract data type

Object

interface (constructor, functions)

interface (constructor, functions)

detail (data type definition, auxiliary .
deta|| (variables, auxiliary functions)

functions)

m preserving data integrity,

m abstraction,

m re-usable codes.

	Encapsulation
	Packages
	Hiding
	Abstract Data Types
	Class and Object
	Object
	Class

