
Programming Languages:Encapsulation

Programming Languages:

Encapsulation

Onur Tolga Şehitoğlu

Computer Engineering

20 March 2008

Programming Languages:Encapsulation

1 Encapsulation

2 Packages

3 Hiding

4 Abstract Data Types

5 Class and Object
Object
Class

Programming Languages:Encapsulation

Encapsulation

Encapsulation

Managing the complexity → Re-usable code and abstraction.
Example:
50 lines no abstraction is essential, all in main()
500 lines function/procedure abstraction sufficient
5,000 lines function groups forming modules, mod-

ules are combined to form the application
500,000 lines heavy abstraction and modularization, all

parts designed for reuse (libraries, com-
ponents etc)

Programming Languages:Encapsulation

Encapsulation

Modularization and Encapsulation

Building an independent and self complete set of function and
variable declarations (Packaging)

Restricting access to this set only via a set of interface
function and variables. (Hiding and Encapsulation)

interface

detail (functions,

variables, algorithm)

other application

×

√

Programming Languages:Encapsulation

Encapsulation

Advantages of Encapsulation

High volume details reduced to interface definitions (Ease of
development/maintenance)

Many different applications use the same module via the same
interface (Code re-usability)

Lego like development of code with building blocks (Ease of
development/maintenance)

Even details change, applications do not change (as long as
interface is kept same) (Ease of development/maintenance)

Module can be used in following projects (Code re-usability)

Programming Languages:Encapsulation

Packages

A group of declarations put into a single body.

C has indirect way of packaging per source file.

C++

namespace Tr ig {

const double p i =3.14159265358979;
double s i n (double x) { ... }

double cos (double x) { ... }

double tan (double x) { ... }

double atan (double x) { ... }

...

};

Trig::sin(Trig::pi/2+x)+Trig::cos(x)

C++: (::) Scope operator.

Identifier overlap is avoided. List::insert(...) ve
Tree::insert(...) no name collisions.

Programming Languages:Encapsulation

Hiding

Hiding

A group of functions and variables hidden inside. The others
are interface. Abstraction inside of a package:
double taylorseries(double);

double sin(double x);

double pi=3.14159265358979;

double randomseed;

double cos(double x);

double errorcorrect(double x);

{-- only sin , pi and cos are accessible --}

module Tr ig (sin,pi,cos) where

t a y l o r s e r i e s x = ...

sin x = ...

pi =3.14159265358979

randomseed= ...

cos x = ...

e r r o r c o r r e c t x = ...

Programming Languages:Encapsulation

Abstract Data Types

Abstract data types

Internals of the datatype is hidden and only interface
functions provide the access.

Example: rational numbers: 3/4 , 2/5, 19/3
data Rational = Rat (Integer,Integer)

x = Rat (3,4)
add (Rat(a,b)) (Rat(c,d)) = Rat (a*d+b*c,b*d)

1 Invalid value? Rat (3,0)

2 Multiple representations of the same value?
Rat (2,4) = Rat (1,2) = Rat(3,6)

Solution: avoid arbitrary values by the user.

Programming Languages:Encapsulation

Abstract Data Types

Main purpose of abstrac data types is to use them transparently
(as if they were built-in) without loosing data integrity.

module Rational(Rational,rat,add,subtract,multiply,divide) where

data Rational = Rat (Integer ,Integer)

r a t (x,y) = s i m p l i f y (Rat(x,y))
add (Rat(a,b)) (Rat(c ,d)) = r a t (a*d+b*c ,b*d)
subtract(Rat(a,b)) (Rat(c ,d)) = r a t (a*d-b*c ,b*d)
mu l t i p l y (Rat(a,b)) (Rat(c ,d)) = r a t (a*c ,b*d)
d i v i d e (Rat(a,b)) (Rat(c ,d)) = r a t (a*d,b*c)
gcd x y = if (x ==0) then y

else if (y==0) then x
else if (x<y) then gcd x (y-x)
else gcd y (x-y)

simplify (Rat(x,y)) = if y==0 then Rat(div x y ,1)
else let a=gcd x y

in Rat(div x a, div y a)

Initial value? We need constructor function/values. (remember we
don’t have the data definition)
rat (x,y) instead of Rat (x,y)

Programming Languages:Encapsulation

Class and Object

Object

Object

Packages containing hidden variables and access is restricted
to interface functions.

Variables with state

Data integrity and abstraction provided by the interface
functions.

Entities in software can be modelled in terms of functions
(server, customer record, document content, etc). Object
oriented design.

Example (invalid syntax! imaginary C++)

namespace Counter {

private: int coun t e r =0;
public: int get () { return coun t e r ;}
public: void i n c r ement () { coun t e r ++; }

};

Counter :: get () Counter :: i n c r ement ()

Programming Languages:Encapsulation

Class and Object

Class

Class

The set of same typed objects form a class

An object is an instance of the class that it belongs to (a
counter type instead of a single counter)

Classes have similar purposes to abstract data types

Some languages allows both objects and classes

C++ class declaration (valid syntax):

class Counter {

private: int coun t e r ;
public: Counter () { coun t e r =0; }

int get () { return coun t e r ;}
void i n c r ement () { coun t e r ++; }

} men, v e h i c l e s ;
men. i n c r ement (); v e h i c l e s . i n c r ement ();
men. get (); v e h i c l e s . get ();

Programming Languages:Encapsulation

Class and Object

Class

Abstract data type

interface (constructor, functions)

detail (data type definition, auxiliary

functions)

Object

interface (constructor, functions)

detail (variables, auxiliary functions)

Purpose

preserving data integrity,

abstraction,

re-usable codes.

	Encapsulation
	Packages
	Hiding
	Abstract Data Types
	Class and Object
	Object
	Class

