
Programming Language Concepts/Higher Order Functions

Programming Language Concepts/Higher Order
Functions

Onur Tolga Şehitoğlu

Computer Engineering

13 April 2009

Programming Language Concepts/Higher Order Functions

Outline

1 Lambda Calculus

2 Introduction

3 Functions
Curry
Map
Filter
Reduce
Fold Left
Iterate
Value Iteration (for)

4 Higher Order Functions in C

5 Some examples
Fibonacci
Sorting
List Reverse

Programming Language Concepts/Higher Order Functions

Lambda Calculus

Lambda Calculus

1930’s by Alonso Church and Stephen Cole Kleene

Mathematical foundation for computatibility and recursion

Simplest functional paradigm language

λvar .expr
defines an anonymous function. Also called lambda
abstraction

expr can be any expression with other lambda abstractions
and applications. Applications are one at a time.

(λx .λy .x + y) 3 4

Programming Language Concepts/Higher Order Functions

Lambda Calculus

In ‘λvar .expr ’ all free occurences of var is bound by the λvar .

Free variables of expression FV (expr)

FV (name) = {name} if name is a variable
FV (λname.expr) = FV (expr) − {name}
FV (M N) = FV (M) ∪ FV (N)

α conversion: expressions with all bound names changed to
another name are equivalent:
λf .f x ≡α λy .y x ≡α λz .z x

λx .x + (λx .x + y)≡α λt.t + (λx .x + y)≡α λt.t + (λu.u + y)
λx .x + (λx .x + y) 6≡α λx .x + (λx .x + t)

Programming Language Concepts/Higher Order Functions

Lambda Calculus

β Reduction

Basic computation step, function application in λ-calculus

Based on substitution. All bound occurences of λ variable
parameter is substituted by the actual parameter

(λx .M)N 7→β M[x/N] (all x ’s once bound by lambda are
substituted with N).

(λx .(λy .y + (λx .x + 1) y)(x + 2)) 5

If no further β reduction is possible, it is called a normal form.

There can be different reduction strategies but should reduce
to same normal form. (Church Rosser property)

Programming Language Concepts/Higher Order Functions

Lambda Calculus

All possible reductions of a λ-expression. All reduce to the same
normal form.

λx.(λy.y + (λx.x + 1 y) (x + 2)) 5

λy.y + (λx.x + 1 y) (5 + 2)

5 + 2 + (λx.x + 1 (5 + 2))

5 + 2 + 5 + 2 + 1

λy.y + y + 1 (5 + 2)

λx.x + 2 + (λx.x + 1 (x + 2)) 5

5 + 2 + (λx.x + 1 (5 + 2)) λx.x + 2 + x + 2 + 1 5

λx.(λy.y + y + 1 (x + 2)) 5

λy.y + y + 1 (5 + 2)

λx.x + 2 + x + 2 + 1 5

Programming Language Concepts/Higher Order Functions

Introduction

Introduction

Mathematics:
(f ◦ g)(x) = f (g(x)) , (g ◦ f)(x) = g(f (x))

“◦” : Gets two unary functions and composes a new function.
A function getting two functions and returning a new function.

in Haskell:

f x = x+x
g x = x*x
compose func1 func2 x = func1 (func2 x)
t = compose f g
u = compose g f

t 3 = (3*3)+(3*3) = 18

u 3 = (3+3)*(3+3) = 36

compose: (β → γ) → (α → β) → α → γ

Programming Language Concepts/Higher Order Functions

Introduction

“compose” function is a function getting two functions as
parameters and returning a new function.

Functions getting one or more functions as parameters are
called Higher Order Functions.

Many operations on functional languages are repetition of a
basic task on data structures.

Functions are first order values → new general purpose
functions that uses other functions are possible.

Programming Language Concepts/Higher Order Functions

Functions

Curry

Functions/Curry

Cartesian form vs curried form:
α × β → γ vs α → β → γ

Curry function gets a
binary function in cartesian form and converts it to curried form.

curry f x y = f (x,y)
add (x,y) = x+y
inc r ement = curry add 1

i n c r ement 5

6

curry: (α × β → γ) → α → β → γ

Haskell library includes it as curry.

Programming Language Concepts/Higher Order Functions

Functions

Map

Functions/Map

squa r e x = x*x
day no = case no of 1 -> "mon" ; 2 -> "tue" ; 3 -> "wed";

4 -> "thu" ; 5 -> "fri" ; 6 -> "sat" ; 7 -> "sun"

map f unc [] = []

map f unc (e l : r e s t) = (f unc e l):(map f unc r e s t)

map squa r e [1,3,4,6]

[1,9,6,36]

map day [1,3,4,6]

["mon","wed","thu","sat"]

map:(α → β) → [α] → [β]

Gets a function and a list. Applies the function to all elements
and returns a new list of results.

Haskell library includes it as map.

Programming Language Concepts/Higher Order Functions

Functions

Filter

Functions/Filter

i s e v e n x = if mod x 2 == 0 then True else False

i s g r e a t e r x = x >5

filter f unc [] = []

filter f unc (e l : r e s t) = if f unc e l then

e l :(filter f unc r e s t)
else (filter f unc r e s t)

filter i s e v e n [1,2,3,4,5,6,7]

[2,4,6]

filter i s g r e a t e r [1,2,3,4,5,6,7]

[6,7]

filter:(α → Bool) → [α] → [α]

Gets a boolean function and a list. Returns a list with only
members evaluated to True by the boolean function.

Haskell library includes it as filter.

Programming Language Concepts/Higher Order Functions

Functions

Reduce

Functions/Reduce (Fold Right)

sum x y = x+y
product x y = x*y

r educe func s [] = s
r educe func s (e l : r e s t) = f unc e l (r educe func s r e s t)

r educe sum 0 [1,2,3,4]

10 // 1+2+3+4+0

r educe product 1 [1,2,3,4]

24 // 1*2*3*4*1

reduce:(α → β → β) → β → [α] → β

Gets a binary function, a list and a seed element. Applies
function to all elements right to left with a single value.
reduce f s [a1, a2, ..., an] = f a1 (f a2 (.... (f an s)))

Haskell library includes it as foldr.

Programming Language Concepts/Higher Order Functions

Functions

Reduce

Sum of a numbers in a list:
listsum = reduce sum 0

Product of a numbers in a list:
listproduct = reduce product 1

Sum of squares of a list:
squaresum x = reduce sum 0 (map square x)

Programming Language Concepts/Higher Order Functions

Functions

Fold Left

Functions/Fold Left

subtract x y = x - y
foldl f unc s [] = s
foldl f unc s (e l : r e s t) =

foldl f unc (f unc s e l) r e s t

r educe subtract 0 [1,2,3,4]

-2 // 1-(2-(3-(4-0)))

foldl subtract 0 [1,2,3,4]

-10 // ((((0 -1) -2) -3) -4)

foldl:(α → β → α) → α → [β] → α

Reduce operation, left associative.:
reduce f s [a1, a2, ..., an] = f (f (f ...(f s a1) a2 ...)) an

Haskell library includes it as foldl.

Programming Language Concepts/Higher Order Functions

Functions

Iterate

Functions/Iterate

tw i c e x = 2*x

iterate f unc s 0 = s
iterate f unc s n = f unc (iterate f unc s (n-1))

iterate tw i c e 1 4

16 // tw i c e (tw i c e (tw i c e (tw i c e 1))

iterate squa r e 3 3

6561 // squa r e (squa r e (squa r e 3))

iterate:(α → α) → α → int → α

Applies same function for given number of times, starting with
the initial seed value. iterate f s n = f n s = f (f (f ...(f s))

︸ ︷︷ ︸

n

Programming Language Concepts/Higher Order Functions

Functions

Value Iteration (for)

Functions/Value Iteration (for)

f o r func s m n =

if m>n then s
else f o r func (f unc s m) (m+1) n

f o r sum 0 1 4

10 // sum (sum (sum (sum 0 1) 2) 3) 4

f o r product 1 1 4

24 // product (product (product (product 1 1) 2) 3) 4

for:(α → int → α) → α → int → int → α

Applies a binary integer function to a range of integers in
order.
for f s m n = f (f (f (f (f s m) (m + 1)) (m + 2)) ...) n

Programming Language Concepts/Higher Order Functions

Functions

Value Iteration (for)

multiply (with summation):
multiply x = iterate (sum x) x

integer power operation (Haskell ’^’):
power x = iterate (product x) x

sum of values in range 1 to n:
seriessum = for sum 0 1

Factorial operation:
factorial = for product 1 1

Programming Language Concepts/Higher Order Functions

Higher Order Functions in C

Higher Order Functions in C

C allows similar definitions based on function pointers. Example:
bsearch() and qsort() funtions in C library.

typedef struct Person { char name[30]; int no;} pe r son ;
int cmpnmbs(void *a, void *b) {

pe r son *ka=(pe r son *)a; pe r son *kb=(pe r son *)b;
return ka ->no - kb->no;

}

int cmpnames(void *a, void *b) {

pe r son *ka=(pe r son *)a; pe r son *kb=(pe r son *)b;
return strncmp (ka ->name,kb->name,30);

}

int main() { int i ;
pe r son l i s t []={{"veli" ,4},{"ali" ,12},{"ayse" ,8},

{"osman" ,6},{"fatma" ,1},{"mehmet" ,3}};

q s o r t (l i s t ,6,sizeof(pe r son),cmpnmbs);
...

q s o r t (l i s t ,6,sizeof(pe r son),cmpnames);
...

}

Programming Language Concepts/Higher Order Functions

Some examples

Fibonacci

Fibonacci

Fibonacci series: 1 1 2 3 5 8 13 21 ..
fib(0) = 1 ; fib(1) = 1 ; fib(n) = fib(n − 1) + fib(n − 2)

f i b n = let f (x,y) = (y,x+y)
(a,b) = iterate f (0,1) n

in b

f i b 5 // f (f (f (f (0 ,1))))
8 //(0,1)->(1,1)->(1,2)->(2,3)->(3,5)->(5,8)

Programming Language Concepts/Higher Order Functions

Some examples

Sorting

Sorting

Quicksort:

1 First element of the list is x and rest is xs

2 select smaller elements of xs from x, sort them and put
before x.

3 select greater elements of xs from x, sort them and put after
x.

not func f x y = not (f x y)

sort [] = []

sort f unc (x: xs) = (sort f unc (filter (f unc x) xs)) ++

(x: (sort f unc (filter ((not func func) x) xs)))

sort (>) [5,3,7,8,9,3,2,6,1]

[1,2,3,3,5,6,7,8,9]

sort (<) [5,3,7,8,9,3,2,6,1]

[9,8,7,6,5,3,3,2,1]

Programming Language Concepts/Higher Order Functions

Some examples

List Reverse

List Reverse

Taking the reverse

First element is x rest is xs

Reverse the xs, append x at the end

Loose time for appending x at the end at each step (N times append of size N).

Fast version, extra parameter (initially empty list) added:

Take the first element, insert at the beginning of the extra parameter.
Recurse rest of the list with the new extra parameter.
When recursion at the deepest, return the extra parameter.

Inserts to the beginning of the list at each step. Faster (N times insertion)

r e v e r s e 1 [] = []

r e v e r s e 1 (x: xs) = (r e v e r s e 1 xs) ++ [x]

r e v e r s e 2 x = r e v e r s e 2 ’ x [] where

r e v e r s e 2 ’ [] x = x
r e v e r s e 2 ’ (x: xs) y = r e v e r s e 2 ’ xs (x:y)

r e v e r s e 1 [1..10000] // s low
r e v e r s e 2 [1..10000] // f a s t

	Lambda Calculus
	Introduction
	Functions
	Curry
	Map
	Filter
	Reduce
	Fold Left
	Iterate
	Value Iteration (for)

	Higher Order Functions in C
	Some examples
	Fibonacci
	Sorting
	List Reverse

