Programming Language Concepts/Higher Order Functions

Onur Tolga Șehitoğlu
Computer Engineering

13 April 2009

Outline

1 Lambda Calculus
2 Introduction
3 Functions

- Curry
- Map
- Filter
- Reduce
- Fold Left
- Iterate
- Value Iteration (for)

4 Higher Order Functions in C

5 Some examples

- Fibonacci
- Sorting
- List Reverse

Lambda Calculus

■ 1930's by Alonso Church and Stephen Cole Kleene
■ Mathematical foundation for computatibility and recursion

- Simplest functional paradigm language
- λ var.expr
defines an anonymous function. Also called lambda abstraction
- expr can be any expression with other lambda abstractions and applications. Applications are one at a time.
■ $(\lambda x . \lambda y . x+y) 34$

■ In ' λ var.expr ' all free occurences of var is bound by the $\lambda v a r$.
■ Free variables of expression FV(expr)
■ $F V($ name $)=\{$ name $\}$ if name is a variable
■ $F V(\lambda$ name.expr $)=F V($ expr $)-\{$ name $\}$
■ $F V(M N)=F V(M) \cup F V(N)$

- α conversion: expressions with all bound names changed to another name are equivalent:
$\lambda f . f x \equiv_{\alpha} \lambda y . y x \equiv_{\alpha} \lambda z . z x$
$\lambda x \cdot x+(\lambda x \cdot x+y) \equiv{ }_{\alpha} \lambda t . t+(\lambda x \cdot x+y) \equiv{ }_{\alpha} \lambda t . t+(\lambda u \cdot u+y)$
$\lambda x \cdot x+(\lambda x \cdot x+y) \not \equiv_{\alpha} \lambda x \cdot x+(\lambda x \cdot x+t)$

β Reduction

■ Basic computation step, function application in λ-calculus
■ Based on substitution. All bound occurences of λ variable parameter is substituted by the actual parameter
$■(\lambda x . M) N \mapsto_{\beta} M[x / N]$ (all x 's once bound by lambda are substituted with N).

- $(\lambda x \cdot(\lambda y \cdot y+(\lambda x \cdot x+1) y)(x+2)) 5$

■ If no further β reduction is possible, it is called a normal form.

- There can be different reduction strategies but should reduce to same normal form. (Church Rosser property)

All possible reductions of a λ-expression. All reduce to the same normal form.

Introduction

- Mathematics:

$$
(f \circ g)(x)=f(g(x)),(g \circ f)(x)=g(f(x))
$$

- "o" : Gets two unary functions and composes a new function.

A function getting two functions and returning a new function.

- in Haskell:
$f x=x+x$
$\mathrm{g} x=x * x$
compose func1 func2 $x=$ func1 (func2 x)
$\mathrm{t}=$ compose $\mathrm{f} g$
$\mathrm{u}=$ compose g f
■ t $3=(3 * 3)+(3 * 3)=18$
u $3=(3+3) *(3+3)=36$
- compose: $(\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$
- "compose" function is a function getting two functions as parameters and returning a new function.
- Functions getting one or more functions as parameters are called Higher Order Functions.
- Many operations on functional languages are repetition of a basic task on data structures.
- Functions are first order values \rightarrow new general purpose functions that uses other functions are possible.

Functions/Curry

- Cartesian form vs curried form:
$\alpha \times \beta \rightarrow \gamma$ vs $\alpha \rightarrow \beta \rightarrow \gamma$
- Curry function gets a
binary function in cartesian form and converts it to curried form.

```
curry f x y = f(x,y)
add (x,y) = x+y
increment = curry add 1
increment 5
6
```

■ curry: $(\alpha \times \beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \beta \rightarrow \gamma$
■ Haskell library includes it as curry.

Functions/Map

```
square \(x=x * x\)
```



```
map func [] = []
map func (el:rest) \(=(\) func el): (map func rest)
map square \([1,3,4,6]\)
[1, 9, 6, 36]
map day \([1,3,4,6]\)
["mon", "wed", "thu", "sat"]
```

- map: $(\alpha \rightarrow \beta) \rightarrow[\alpha] \rightarrow[\beta]$
- Gets a function and a list. Applies the function to all elements and returns a new list of results.
■ Haskell library includes it as map.

Functions/Filter

```
iseven x = if mod x 2 == 0 then True else False
isgreater x = x>5
filter func [] = []
filter func (el:rest) = if func el then
                                el:(filter func rest)
else (filter func rest)
filter iseven [1,2,3,4,5,6,7]
[2,4,6]
filter isgreater [1,2,3,4,5,6,7]
[6,7]
```

■ filter $:(\alpha \rightarrow$ Bool $) \rightarrow[\alpha] \rightarrow[\alpha]$

- Gets a boolean function and a list. Returns a list with only members evaluated to True by the boolean function.
■ Haskell library includes it as filter.

Functions/Reduce (Fold Right)

```
sum x y = x+y
product x y = x*y
reduce func s [] = s
reduce func s (el:rest) = func el (reduce func s rest)
reduce sum 0 [1, 2, 3, 4]
10 // 1+2+3+4+0
reduce product 1 [1,2,3,4]
24 // 1*2*3*4*1
```

- reduce $:(\alpha \rightarrow \beta \rightarrow \beta) \rightarrow \beta \rightarrow[\alpha] \rightarrow \beta$
- Gets a binary function, a list and a seed element. Applies function to all elements right to left with a single value.
reduce $f s\left[a_{1}, a_{2}, \ldots, a_{n}\right]=f a_{1}\left(f a_{2}\left(\ldots\left(f a_{n} s\right)\right)\right)$
■ Haskell library includes it as foldr.
- Sum of a numbers in a list: listsum $=$ reduce sum 0
- Product of a numbers in a list:
listproduct $=$ reduce product 1
- Sum of squares of a list:

$$
\text { squaresum } \mathrm{x}=\text { reduce sum } 0 \text { (map square } \mathrm{x} \text {) }
$$

Functions/Fold Left

$$
\begin{aligned}
& \text { subtract } x y=x-y \\
& \text { foldl func } s \text { [] = s } \\
& \text { foldl func } s \text { (el:rest) = } \\
& \text { foldl func (func s el) rest } \\
& \text { reduce subtract } 0[1,2,3,4] \\
& \text {-2 } \\
& \text { // 1-(2-(3-(4-0))) } \\
& \text { foldl subtract } 0 \text { [1, 2, 3, 4] } \\
& \text {-10 } \\
& / /((((0-1)-2)-3)-4) \\
& \text { ■ foldl: }(\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow[\beta] \rightarrow \alpha \\
& \text { ■ Reduce operation, left associative.: } \\
& \text { reduce } f s\left[a_{1}, a_{2}, \ldots, a_{n}\right]=f\left(f\left(f \ldots\left(f s a_{1}\right) a_{2} \ldots\right)\right) a_{n}
\end{aligned}
$$

■ Haskell library includes it as foldl.

Functions/Iterate

```
twice x = 2*x
iterate func s 0 = s
iterate func s n = func (iterate func s (n-1))
iterate twice 1 4
16 // twice (twice ( twice (twice 1))
iterate square 3 3
6561
// square (square (square 3))
```

■ iterate $:(\alpha \rightarrow \alpha) \rightarrow \alpha \rightarrow$ int $\rightarrow \alpha$

- Applies same function for given number of times, starting with the initial seed value. iterate f s $n=f^{n} s=\underbrace{f(f(f \ldots(f s))}_{n}$

Functions/Value Iteration (for)

```
for func s m n =
    if m>n then s
    else for func (func s m) (m+1) n
```

for sum 014
10 // sum (sum (sum (sum 0 1) 2) 3) 4
for product 114
24 // product (product (product (product 1 1) 2) 3) 4

- for: $(\alpha \rightarrow$ int $\rightarrow \alpha) \rightarrow \alpha \rightarrow$ int \rightarrow int $\rightarrow \alpha$
- Applies a binary integer function to a range of integers in order.

$$
\text { for } f s m n=f(f(f(f(f s m)(m+1))(m+2)) \ldots) n
$$

- multiply (with summation): multiply $x=$ iterate (sum x) x
- integer power operation (Haskell ' \wedge '): power $\mathrm{x}=$ iterate (product x) x
- sum of values in range 1 to n :
seriessum = for sum 01
- Factorial operation:
factorial = for product 11

Higher Order Functions in C

C allows similar definitions based on function pointers. Example: bsearch() and qsort() funtions in C library.

```
typedef struct Person { char name[30]; int no;} person;
int cmpnmbs(void *a, void *b) {
    person *ka=(person *)a; person *kb=(person *)b;
    return ka->no - kb->no;
}
int cmpnames(void *a, void *b) {
    person *ka=(person *)a; person *kb=(person *)b;
    return strncmp(ka->name,kb->name, 30);
}
int main() { int i;
    person list []={{"veli",4},{"ali", 12},{"ayse",8},
    {"osman", 6},{"fatma", 1},{"mehmet", 3}};
    qsort(list ,6,sizeof(person),cmpnmbs);
    qsort(list ,6, sizeof(person),cmpnames);
}
```


Fibonacci

Fibonacci series: 1123581321 ..

$$
\begin{aligned}
\operatorname{fib}(0)= & 1 ; \operatorname{fib}(1)=1 ; \operatorname{fib}(n)=\operatorname{fib}(n-1)+\operatorname{fib}(n-2) \\
\text { fib } n= & \text { let } f(x, y)=(y, x+y) \\
& \text { in }(a, b)=\text { iterate } f(0,1) n
\end{aligned}
$$

fib 5

$$
\begin{aligned}
& / / f(f(f(f(0,1)))) \\
& / /(0,1)->(1,1)->(1,2)->(2,3)->(3,5)->(5,8)
\end{aligned}
$$

Sorting

Quicksort:

1 First element of the list is x and rest is xs
2 select smaller elements of xs from x, sort them and put before x .

3 select greater elements of xs from x , sort them and put after x .

```
notfunc f x y = not (f x y)
```

sort - [] = []
sort func (x:xs) = (sort func (filter (func x) xs)) ++
(x: (sort func (filter ((notfunc func) x) x s)))
sort (>) $[5,3,7,8,9,3,2,6,1]$
$[1,2,3,3,5,6,7,8,9]$
sort (<) $[5,3,7,8,9,3,2,6,1]$
$[9,8,7,6,5,3,3,2,1]$

LSome examples

List Reverse

List Reverse

- Taking the reverse

■ First element is x rest is xs

- Reverse the xs, append x at the end

Loose time for appending x at the end at each step (N times append of size N).

- Fast version, extra parameter (initially empty list) added:
- Take the first element, insert at the beginning of the extra parameter.
- Recurse rest of the list with the new extra parameter.

■ When recursion at the deepest, return the extra parameter.
Inserts to the beginning of the list at each step. Faster (N times insertion)

```
reverse1 [] = []
reverse1 (x:xs) = (reverse1 xs) ++ [x]
reverse2 x = reverse2, x [] where
    reverse2, [] x = x
    reverse2, (x:xs) y = reverse2, xs (x:y)
reverse1 [1..10000] // slow
reverse2 [1..10000] // fast
```

