
Programming Languages:OO Paradigm, Objects

Programming Languages:

OO Paradigm, Objects

Onur Tolga Şehitoğlu

Computer Engineering,METU

15 April 2008

Programming Languages:OO Paradigm, Objects

Outline

1 Object Oriented Programming
2 Constructors/Destructors

Constructors
Heap Objects
Destructors

Copy Constructor

3 const Keyword

4 Operator Overloading
Friends

5 Implementation of Objects

Programming Languages:OO Paradigm, Objects

Object Oriented Programming

Object Oriented Programming

Abstraction

Encapsulation

Hiding

Inheritance

Programming Languages:OO Paradigm, Objects

Object Oriented Programming

Encapsulation/Scope

Objects consist of:

attributes (member variables)
methods (member functions)

encapsulated in a package scope

Person

name

surname

no

getname()

setno()

attributes: state of objects

methods: behaviour of objects

alternative terminalogy: messages
call a method ≡ send message to an object

A class is the family for similar objects.

An object is an instance of a class.

Programming Languages:OO Paradigm, Objects

Object Oriented Programming

class Person {

char name[40], surname [40];
int no;

public:

const char * getname() { return name;}
void s e tno (int);

} ob j ;

void Person :: s e tno (int a) {

no=a;
}

C++ allows definitions inside the class or outside by scope
operator ‘::’

Environment is recursive collateral.

obj.getname(); calls the method in the context of object obj.

this keyword denotes pointer to current object in member
functions. (self () in some other languages)

Programming Languages:OO Paradigm, Objects

Object Oriented Programming

Hiding

Interface vs detail. Details are hidden, only interface members
are exported outside.

C++ uses private :, protected:, and public: labels to mark hiding.

only members following a public: label are visible outside (the
object for example). Member functions can access all
members regardless of their labels.

obj.setno(4) is legal, obj.no is not.

Hiding depends on scope and it is lexical. In C++ pointer
conversions can violate hiding.

By convention all member variables should be private, some
member functions can be private, only some of member
functions are public.

protected keyword is useful with inheritance.

Programming Languages:OO Paradigm, Objects

Object Oriented Programming

Abstraction

An object is an abstraction over the programming entity
defined by the model in the design.

Model: customer, bank, registration, course, advisor, mail,
chatroom,...

Class should provide:

Transparent behaviour for the objects, access via interface
functions.
Data integrity. Objects should be valid through their lifetimes.

Data integrity at the beginning of lifetime provided by
constructors (+destructors in C++)

Programming Languages:OO Paradigm, Objects

Constructors/Destructors

Constructors

Constructors

Special member functions called when lifetime of the object
starts just after storage of members are ready

Automatically called. No explicit calls.

no return value, name is same with the class

can be overloaded

class Person {

char *name[40], * surname [40];
int no;

public:

Person (const char *n, const char * s) {

s t r c p y (name,n) ; s t r c p y (surname , s) ; no=0;
}

Person () { name[0]=0; surname [0]=0; no=0;}
} ob j ;

Programming Languages:OO Paradigm, Objects

Constructors/Destructors

Constructors

Constructors can be overloaded
Definition Constructor

Person a ; Person()

Person a("ali","veli"); Person(const char *, const char *)

Number a=3; Number(int)

Number a(3); Number(int)

Number b=a; Number(Number &a)

Number a[2]={0,1} Number(int)

If no constructor implemented, empty constructor (do
nothing) assumed

If at least one constructor exists, variables should match at
least one of them, no empty constructor assumed

Constructors are called by the language when lifetime started:

1 start of program for global objects
2 entrance to function for local objects
3 when heap objects are created (with new)

Programming Languages:OO Paradigm, Objects

Constructors/Destructors

Heap Objects

Heap Objects

new and delete operators instead of malloc() and free().
Why?

Person *p=new Person("ali","veli");

delete p;

Array allocation/deallocation:
Person *p=new Person[100];

delete [] p;

Programming Languages:OO Paradigm, Objects

Constructors/Destructors

Destructors

Destructors

When storage (members) of an object allocated dynamically

Lifetime is over : garbage

We need calls to collect heap variables within the object

Java solution: garbage collector does the job. We need
nothing

C++: destructors: member functions called when lifetime is
over.

A class only have one destructor with exact type and name:
~ClassName(). Called:

1 end of program for global objects
2 return from function for local objects
3 when heap objects are deallocated (with delete)

Programming Languages:OO Paradigm, Objects

Constructors/Destructors

Copy Constructor

Destructor does not solve all problems with objects with heap
members:

Semantics of assignment
Semantics of parameter passing
Semantics of return value
Initialization

Default behaviour of C++ is copy member values byte by
byte.

Java assigns/passes by reference. No copying.

C++ Solution: implement your own semantic by Copy
constructor and overloading assignment operator.

Assignment operator destroys an existing object and replaces
with the data from new one, copy constructor copies data into
an empty object.

Programming Languages:OO Paradigm, Objects

Constructors/Destructors

Copy Constructor

Copy Constructor

Type is: ClassName(const ClassName &)

Called when:

Object passed by value: void add(ClassName a) {...}

Object initialized by object: ClassName a,b=a;

Object returned as a value ClassName getVal() {...}

Last one is a little tricky.

Default behaviour exists even if it other constructors exist.

Programming Languages:OO Paradigm, Objects

Constructors/Destructors

Copy Constructor

class L i s t {

struct Node { int x; Node * next } *head;
public: L i s t () { head=NULL;}

L i s t (cons L i s t &); // Copy constructor

~ L i s t ();
};

void pa s s b y v a l u e (L i s t a) {

...

}

L i s t r e t u r n a s v a l u e (L i s t &a) {

L i s t b=a;

...

return a;

}

...

pa s s b y v a l u e (c);
...

d= r e t u r n a s v a l u e (c);
...

Copy Constructor, explicit

C
o
p
y

C
o
n
st

ru
ct

o
r

Copy Constructor

Programming Languages:OO Paradigm, Objects

Constructors/Destructors

Copy Constructor

Pass by value of objects are constructed by the copy
constructor

Return an object as a value creates a temporary object in
place of return and uses it:
d= returnasvalue(c); ≡ {List tmp=returnasvalue(c); d=tmp; }

Temporary objects are created at such expressions and
deallocated at the end of the line (at ‘;’), destructors are
called regularly.

Explicit call to a constructor also creates such a temporary
object.
g=Person("ali","veli");

C++ optimizer avoids copy constructor calls when possible.
List f() { List t;...; return t;} ... ; d=f(); ...

Programming Languages:OO Paradigm, Objects

const Keyword

const Keyword

C++ does strict type checking on constant restriction on const

const char *p vs char *const q

1 p[3]=’a’; ×
2 q[3]=’a’;

√

3 p++;
√

4 q++; ×

const char * const p

f(const ClassName &a) makes the parameter object constant
during the function scope

const ClassName &f() makes the returned object reference
constant in expression containing the function call

What’s beside assignment? constant member functions

Programming Languages:OO Paradigm, Objects

const Keyword

Constant Member Functions

void f(const Rational &a) { ...; a.clear(3);...;a.out();}

void Rational::clear() { a=b=0;}

What is wrong above?

void Rational::out() const {...; a=b=0; }

const keyword preceding the function body makes member
function a constant function.

Constant functions cannot update member variables, only can
inspect them
a=b=0 in out() is invalid above

If an object is constant, only constant member functions can
be called.
a.clear(3); is invalid above

Type system of C++ prohibits those → Syntax error.

Programming Languages:OO Paradigm, Objects

Operator Overloading

Operator Overloading

Not an essential feature of object oriented programming but
improves readability in some cases.

Especially usefull in implementing selector abstraction, algebra
based applications.

Do not use it when the operator is not intuitive for the
context (class and the operation).

C++ allows overloading of existing operators with same arity
and precedence and only if at least one class type involves in
the operator

Operator can be implemented as a member function (first
parameter is the class) or as an external function (which has
at least one parameter being a class)

Programming Languages:OO Paradigm, Objects

Operator Overloading

All C++ operators except ‘.’ , ‘?:’, ‘::’, ‘.*’ and ‘->*’

For unary operators:
©1 void ClassName::operator++();

©2 void operator++(ClassName &a);

For binary operators:
©1 void ClassName::operator&&(int a);

©2 void operator&&(int a,ClassName &b);

First versions are member functions, can exist private
members. Only operand in unary case, LHS in binary case is
the current object

Second versions are outside of the definition. You need friend

declaration if they need to access private members.

Programming Languages:OO Paradigm, Objects

Operator Overloading

Ra t i o n a l & Ra t i o n a l :: operator +(Ra t i o n a l &b) {...}

Ra t i o n a l & Ra t i o n a l :: operator +(int n) {...}

Ra t i o n a l & Ra t i o n a l ::operator <(Ra t i o n a l &b) {...}

Ra t i o n a l & Ra t i o n a l :: operator !() {...}

Ra t i o n a l & Ra t i o n a l :: operator ++() {...}

Ra t i o n a l & Ra t i o n a l :: operator ++(int nouse) {...}

Ra t i o n a l & Ra t i o n a l :: operator double () {...}

void Hash:: operator =(Hash &a) {...}

double Hash:: operator [](int a) {...}

double Hash:: operator [](const char a[]) {...}

Hash & Hash:: operator ()(const char a[]) {...}

double Po i n t e r :: operator *() {...}

void * Po i n t e r ::new(s i z e t s i z e) {...}

void * Po i n t e r :: delete(void *p, s i z e t s i z e) {...}

Ra t i o n a l a,b,c; Hash h, j ; Po i n t e r p,*q;
a+b; a+3; if (a<b) ... ; !a;
++a; a++; x=(double)a;

h= j ; x=h[3]; x=h["ali"]; i =h("a-b");

x=*p; q=new Po i n t e r ; delete q;

Programming Languages:OO Paradigm, Objects

Operator Overloading

int operator +(int a, Ra t i o n a l &b) {...}

Ra t i o n a l & operator ++(Ra t i o n a l &b) {...}

ost ream & operator <<(ost ream &os , Ra t i o n a l &a) {...}

i s t r e am & operator >>(i s t r e am &os , Ra t i o n a l &a) {...}

void operator +=(Hash &a, Ra t i o n a l b) {...}

Ra t i o n a l a,b; Hash h, j ;

i = i +a;
++a;
cout << a; cout << 3 << a << b ;

c i n >> b;
h+=a;

Programming Languages:OO Paradigm, Objects

Operator Overloading

Friends

Friends

When an external function or class needs to ac-
cess private members, friend declaration is used to grant access.

class Ra t i o n a l {

friend class Hash;
friend ost ream & operator <<(ost ream &,const Ra t i o n a l &);

int a,b;
public: ...

};

class Hash {

...

void operator +=(Ra t i o n a l &a) { .. a.a; .. a.b; ...}

};

ost ream & operator <<(ost ream &os ,const Ra t i o n a l &a) {

os << a.a << "//" << a.b << ’\n’;

return os ;
}

Programming Languages:OO Paradigm, Objects

Implementation of Objects

Implementation of Objects

class Person
char name[40] 40*sizeof(char)

int id sizeof(int)

char * getname() sizeof(char *(*)())

void print() sizeof(void (*)())

What is size of object? Size of member variables + sizeof
member function pointers?

No! Each object does not have to store the function
information.
Its storage is same with the structure without any member
functions.

Function membership handled by the type system:
Person::getname() instead of getname()

Programming Languages:OO Paradigm, Objects

Implementation of Objects

How functions get object context (which object they refer
to?)?

Person::getname(Person *this) instead of no parameters

Person a; a.getname();

converted to Person::getname(&a); internally

All member references inside member function are converted
to:
char *getname() {.. id=5; ... ; strlen(name);...} →
char *Person::getname(Person *this) {

.. this->id=5; ... ; strlen(this->name);...}

	Object Oriented Programming
	Constructors/Destructors
	Constructors
	Heap Objects
	Destructors
	Copy Constructor

	const Keyword
	Operator Overloading
	Friends

	Implementation of Objects

