Programming Languages:OO Paradigm, Objects

Programming Languages:

OO Paradigm, Objects

Onur Tolga Sehitoglu
Computer Engineering, METU

15 April 2008

Programming Languages:OO Paradigm, Objects

Outline

Object Oriented Programming ™ Copy Constructor

Constructors/Destructors const Keyword
m Constructors Operator Overloading
m Heap Objects m Friends

m Destructors Implementation of Objects

Programming Languages:OO Paradigm, Objects
LObject Oriented Programming

Object Oriented Programming

Abstraction

Encapsulation
Hiding

m Inheritance

Programming Languages:OO Paradigm, Objects
LObject Oriented Programming

Encapsulation /Scope

Person
m Objects consist of: name
m attributes (member variables) surname
m methods (member functions) no
encapsulated in a package scope getname ()
setno ()

m attributes: state of objects
m methods: behaviour of objects

m alternative terminalogy: messages
call a method = send message to an object

m A class is the family for similar objects.

m An object is an instance of a class.

Programming Languages:OO Paradigm, Objects

LObject Oriented Programming

class Person {
char name[40], surname [40];
int no;
public:
const char * getname() { return name;}
void setno (int);
} obj ;

void Person::setno(int a) {
no=a;

}

m C++ allows definitions inside the class or outside by scope
operator ‘'’

m Environment is recursive collateral.
B obj.getname(); calls the method in the context of object obj.

m this keyword denotes pointer to current object in member
functions. (self O in some other languages)

Programming Languages:OO Paradigm, Objects
LObject Oriented Programming

Hiding

m Interface vs detail. Details are hidden, only interface members
are exported outside.

m C++ uses private :, protected:, and public: labels to mark hiding.

m only members following a public: label are visible outside (the
object for example). Member functions can access all
members regardless of their labels.

B obj.setno(4) is legal, obj.no is not.

m Hiding depends on scope and it is lexical. In C++ pointer
conversions can violate hiding.

m By convention all member variables should be private, some
member functions can be private, only some of member
functions are public.

m protected keyword is useful with inheritance.

Programming Languages:OO Paradigm, Objects
LObject Oriented Programming

Abstraction

m An object is an abstraction over the programming entity
defined by the model in the design.

m Model: customer, bank, registration, course, advisor, mail,
chatroom,...
m Class should provide:

m Transparent behaviour for the objects, access via interface
functions.
m Data integrity. Objects should be valid through their lifetimes.

m Data integrity at the beginning of lifetime provided by
constructors (+destructors in C++)

Programming Languages:OO Paradigm, Objects
L Constructors/Destructors

L Constructors

Constructors

m Special member functions called when lifetime of the object
starts just after storage of members are ready

m Automatically called. No explicit calls.
m no return value, name is same with the class

m can be overloaded

class Person {
char *name[40], *surname [40];

int no;
public:
Person (const char *n, const char *s) {
strcpy (name,n) ; strcpy(surname,s) ; no=0;
}

Person() { name[0]=0; surname[0]1=0; no=0;}
} obj ;

Programming Languages:OO Paradigm, Objects

- Constructors/Destructors

LConstructors

m Constructors can be overloaded

Definition Constructor

Person a ; Person()

Person a("ali","veli"); Person(const char *, const char *)
Number a=3; Number (int)

Number a(3); Number (int)

Number b=a; Number (Number &a)

Number a[2]={0,1} Number (int)

m If no constructor implemented, empty constructor (do
nothing) assumed

If at least one constructor exists, variables should match at
least one of them, no empty constructor assumed

m Constructors are called by the language when lifetime started:

start of program for global objects
entrance to function for local objects
when heap objects are created (with new)

Programming Languages:OO Paradigm, Objects
L Constructors/Destructors
LHeap Objects

Heap Objects

® new and delete operators instead of malloc() and free().
Why?
B Person *p=new Person("ali","veli");

delete p;

m Array allocation/deallocation:
Person *p=new Person[100];

delete [1 p;

Programming Languages:OO Paradigm, Objects
L Constructors/Destructors

L Destructors

Destructors

m When storage (members) of an object allocated dynamically
m Lifetime is over : garbage
m We need calls to collect heap variables within the object

m Java solution: garbage collector does the job. We need
nothing

m C++: destructors: member functions called when lifetime is
over.

m A class only have one destructor with exact type and name:
~ClassName (). Called:

end of program for global objects
return from function for local objects
when heap objects are deallocated (with delete)

Programming Languages:OO Paradigm, Objects

- Constructors/Destructors

L Copy Constructor

m Destructor does not solve all problems with objects with heap
members:

m Semantics of assignment
m Semantics of parameter passing
m Semantics of return value
m Initialization
m Default behaviour of C++ is copy member values byte by
byte.

m Java assigns/passes by reference. No copying.

m C++ Solution: implement your own semantic by Copy
constructor and overloading assignment operator.

m Assignment operator destroys an existing object and replaces
with the data from new one, copy constructor copies data into
an empty object.

Programming Languages:OO Paradigm, Objects
L Constructors/Destructors

LCopy Constructor

Copy Constructor

m Type is: ClassName(const ClassName &)
m Called when:
m Object passed by value: void add(ClassName a) {...}
m Object initialized by object: ClassName a,b=a;
m Object returned as a value ClassName getVal() {...}
m Last one is a little tricky.
m Default behaviour exists even if it other constructors exist.

Programming Languages:OO Paradigm, Objects

- Constructors/Destructors

L Copy Constructor

class List {

struct Node { int x; Node #*next} *head;
public: List() { head=NULL;}

List (cons List &);

“List)
};
void passbyvalue(List a) {
}
List returnasvalue(List &a) {

List b=aj Copy-Constructor-explicit

Copy Constructor

return a;

Copy Constructor

pdssbyvalue (c)

d=returnasvalue (c);

Programming Languages:OO Paradigm, Objects

- Constructors/Destructors

L Copy Constructor

m Pass by value of objects are constructed by the copy
constructor

m Return an object as a value creates a temporary object in
place of return and uses it:
d=returnasvalue (c); = {List tmp=returnasvalue(c); d=tmp; }

m Temporary objects are created at such expressions and
deallocated at the end of the line (at *;"), destructors are
called regularly.

m Explicit call to a constructor also creates such a temporary
object.
g=Person("ali","veli");

m C++ optimizer avoids copy constructor calls when possible.
List f() { List t;...; return t;} ... ; d=fQ;

Programming Languages:OO Paradigm, Objects
[

const Keyword

const Keyword

C++ does strict type checking on constant restriction on const

B const char *p VS char *const q

pl3l=’a’; X
ql3]=’a’; \/
pH; v/
g++; X

B const char * const p

B f(const ClassName &a) makes the parameter object constant
during the function scope

® const ClassName &f() makes the returned object reference
constant in expression containing the function call

m What's beside assignment? constant member functions

Programming Languages:OO Paradigm, Objects
[

const Keyword

Constant Member Functions

B void f(const Rational &) { ...; a.clear(3);...;a.out();}
void Rational::clear() { a=b=0;}
What is wrong above?

M void Rational::out() const {...; a=b=0; }

const keyword preceding the function body makes member
function a constant function.

m Constant functions cannot update member variables, only can
inspect them
a=b=0 in out () is invalid above

m If an object is constant, only constant member functions can
be called.
a.clear(3); is invalid above

m Type system of C++ prohibits those — Syntax error.

Programming Languages:OO Paradigm, Objects
LOperator Overloading

Operator Overloading

m Not an essential feature of object oriented programming but
improves readability in some cases.

m Especially usefull in implementing selector abstraction, algebra
based applications.

m Do not use it when the operator is not intuitive for the
context (class and the operation).

m C++ allows overloading of existing operators with same arity
and precedence and only if at least one class type involves in
the operator

m Operator can be implemented as a member function (first
parameter is the class) or as an external function (which has
at least one parameter being a class)

Programming Languages:OO Paradigm, Objects

LOperator Overloading

All C++ operators except ‘., '?:", “::", “.*" and '‘=>%’

For unary operators:
@ void ClassName: :operator++();
®void operator++(ClassName &a);

For binary operators:
@ void ClassName: :operator&&(int a);
@void operator&&(int a,ClassName &b);

m First versions are member functions, can exist private
members. Only operand in unary case, LHS in binary case is
the current object

m Second versions are outside of the definition. You need friend
declaration if they need to access private members.

Programming Languages:OO Paradigm, Objects

LOperator Overloading

Rational & Rational::operator+(Rational &b) {...}
Rational & Rational::operator+(int n) {...}
Rational & Rational::operator<(Rational &b) {...}
Rational & Rational::operator!() {...}

Rational & Rational::operator++() {...}

Rational & Rational::operator++(int nouse) {...}
Rational & Rational::operator double() {...}

void Hash::operator=(Hash &a) {...}

double Hash::operator [](int a) {...}

double Hash::operator [](const char a[]) {...}
Hash & Hash::operator () (const char al[]) {...}

double Pointer::operatorx*() {...}
void * Pointer::new(size_t size) {...}

void * Pointer::delete(void *p, size_t size) {...}

Rational a,b,c; Hash h,j; Pointer p,*q;

a+b; a+3; if (a<b) ... ; la;
++a; a++; x=(double)a;
h=j; x=h[3]; x=h["ali"]; i=h("a-b");

X=%p; g=new Pointer; delete q;

Programming Languages:OO Paradigm, Objects

LOperator Overloading

int operator+(int a, Rational &b) {...}
Rational & operator++(Rational &b) {...}
ostream & operator<<(ostream &os, Rational &a) {...}
istream & operator>>(istream &os, Rational &a) {...}

void operator+=(Hash &a, Rational b) {...}
Rational a,b; Hash h,j;

i=i+a;

++a;

cout << a; cout << 3 << a << b ;
cin >> b;

h+=a;

Programming Languages:OO Paradigm, Objects
LOperator Overloading
LFriends

Friends

m When an external function or class needs to ac-
cess private members, friend declaration is used to grant access.

class Rational {
friend class Hash;
friend ostream & operator<<(ostream &,const Rational &);
int a,b;

public:

>8

class Hash {

void operator+=(Rational &a) { .. a.a; .. a.b; ...}
};
ostream & operator<<(ostream &os,const Rational &a) {
0s << a.a << "//" << a.b << ’\n’;
return os;

Programming Languages:OO Paradigm, Objects
leplementation of Objects

Implementation of Objects

class Person
char name[40] 40*sizeof(char)

int id sizeof(int)

ﬁ* Eetname() sizeof chii *ﬁ*

m What is size of object? Size of member variables + sizeof
member function pointers?

m No! Each object does not have to store the function
information.
Its storage is same with the structure without any member
functions.

m Function membership handled by the type system:
Person: : getname() instead of getname ()

Programming Languages:OO Paradigm, Objects

leplementation of Objects

m How functions get object context (which object they refer
to?)?
W Person: :getname(Person *this) instead of no parameters

B Person a; a.getname();

converted to Person: :getname(&a) ; internaIIy

m All member references inside member function are converted
to:
char *getname() {.. id=5; ... ; strlen(hame);...} —
char *Person::getname(Person *this) {

. this->id=5; ... ; strlen(this->name);...}

	Object Oriented Programming
	Constructors/Destructors
	Constructors
	Heap Objects
	Destructors
	Copy Constructor

	const Keyword
	Operator Overloading
	Friends

	Implementation of Objects

