
Programming Languages:OO Paradigm, Polymorhism and Class Members

Programming Languages:
OO Paradigm, Polymorhism and Class Members

Onur Tolga Şehitoğlu

Computer Engineering,METU

1 May 2009

Programming Languages:OO Paradigm, Polymorhism and Class Members

Outline

1 Polymorphism

2 Abstract Classes

Programming Languages:OO Paradigm, Polymorhism and Class Members

Polymorphism

Polymorphism

Inheritance → inclusion polymorphism

Binding is still static, at compile time

Pointers of derived classes are converted to superclass types

class A { int x;
public: void get () { cout << ’A::get()’;}

};

class B : public A { int y;
public: void get () { cout << ’B::get()’;}

}

...

A a, *p;
B b;
p=&a; p-> get ();
p=&b; p-> get ();

Programming Languages:OO Paradigm, Polymorhism and Class Members

Polymorphism

Late Binding

Delaying binding possible

class A { int x;
public: virtual void get () { cout << ’A::get()’;}

};

class B : public A { int y;
public: void get () { cout << ’B::get()’;}

}

...

A a, *p;
B b;
p=&a; p-> get ();
p=&b; p-> get ();

binding of virtual member functions done at run time.

Programming Languages:OO Paradigm, Polymorhism and Class Members

Polymorphism

Abstract Classes

Abstract Classes

void f() = 0 ; makes the function an abstract member

A class with at least one abstract member is an abstract class.

Abstract classes cannot be instantiated

A derived class remains abstract unless all abstract members
are implemented somewhere in derivation chain.

Java interfaces: abstract classes with only abstract member
functions and constants.

Programming Languages:OO Paradigm, Polymorhism and Class Members

Polymorphism

Abstract Classes

binding of move() is static but the draw()’s inside are still late.

class Shape { int x,y;
public: virtual void draw() = 0;

void move(int a, b) {

s e t b g c o l o r (); draw();

x=a; y=b; s e t f g c o l o r (); draw();

}

};

class C i r c l e : public Shape { int r ;
public: void draw() { /* draw circle here */ }

}

class Rec tang l e : public Shape { int w,h;
public: void draw() { /* draw rectangle here */ }

}

...

C i r c l e a(...); Rec tang l e b(...);
a.move(2,4); b.move(3,4);

Programming Languages:OO Paradigm, Polymorhism and Class Members

Polymorphism

Interfaces

Interfaces

Java does not have multiple
inheritance but a class can implement
multiple interfaces

Functions working on interfaces
provide polymorphism for the classes
implementing them

Person and Complex implements the
interface Sortable so that sort(...) can
work uniformly on both

Person

name

Complex

real

img

Sortable

lessthan()

swap()

<<implements>>

sort(Sortable a[],int n);

Programming Languages:OO Paradigm, Polymorhism and Class Members

Polymorphism

Implementation of virtual members

Implementation of virtual members

For each class, a table for virtual member functions are kept
globally (array of function pointers)

Each object contains a pointer to its virtual function table

Size of an object is : (size of member variables + pointer to
virtual mem

class A { int x;
public: virtual void f (...) {...}

virtual void g(...) {...}

} a;
class B : public A { int y;
public: virtual void g(...) {...}

} b;

Programming Languages:OO Paradigm, Polymorhism and Class Members

Polymorphism

Implementation of virtual members

object a

vtable

x

object b

vtable

A::x

y

one pointer

per object

class A vtable

void (*f)(..)

void (*g)(..)

class B vtable

void (*f)(..)

void (*g)(..)

one table per class

void A::f(...)

void A::g(...)

void B::g(...)

Assuming p points to an object of A or B, p->g(..); call is mapped
by the compiler as:
*((p-> vtable)[1])(...);

(assume 0 is the offset of f, 1 is the offset of g)

Programming Languages:OO Paradigm, Polymorhism and Class Members

Generic Abstraction

Generic Abstraction

Abstraction over a declaration

Polymorphism can be defined in terms of generic abstractions

C++ templates

Java generic classes

Programming Languages:OO Paradigm, Polymorhism and Class Members

Generic Abstraction

Templates (C++)

Templates (C++)

Template metaprogramming approach:
All template definitions are expanded as they are instantiated

Macro-like operation. Parameters can be an type or value.

each distinct usage like vector<Person> a creates a new instance
of the template class vector.

All declaration body is expanded as an overloaded version.

Functions can be declared with templates too. Each distinct
typed call is a new instance, a new overload

Very efficient but compiled code gets larger as different
instances used

Parametric polymorphism provied at compile time. Source
code required.

Programming Languages:OO Paradigm, Polymorhism and Class Members

Generic Abstraction

Generics (Java)

Generics (Java)

Restricts parameters to be classes. Primitive types and values
does not work.

Only one copy of the class and class functions exists.

Type checking and verification done at compile time.
Polymorphic code compiled in the binary.

In Java: All object values are references, all member functions
are virtual by default.

Member functions of the parameter class are bound at
run-time providing parametric polymorphism.

Programming Languages:OO Paradigm, Polymorhism and Class Members

Class Members

Class Members

Members shared by objects of the same class. Only one copy
per class.

Assume you need a counter for each created object

int coun t e r =0;

class A { int x;
public: A(int a) { x=a; coun t e r ++;}

~A() { counte r --;}
int ge tcount () { return coun t e r ;}

};

What is wrong with this code?

Programming Languages:OO Paradigm, Polymorhism and Class Members

Class Members

static keywords make a member a class member

class A { int x;
static int counter;

public: A(int a) { x=a; coun t e r ++;}
~A() { counte r --;}
int ge tcount () { return coun t e r ;}

};

int A:: coun t e r =0; // this is required to define the storage

// it is scope of A

Now the coutner is safe. Arbitrary values cannot be assigned.

Why do you need an object to call getcount()?

Programming Languages:OO Paradigm, Polymorhism and Class Members

Class Members

Member functions can be class members too.

class A { int x;
static int coun t e r ;

public: A(int a) { x=a; coun t e r ++;}
~A() { counte r --;}
static int ge tcount () { return coun t e r ;}

};

int A:: coun t e r =0;

Class members can be accessed with scope operator:
A::getcount();

No object required. What if getcount() tries to access an
object? You don’t have one!

Class member functions can only access other class members.

Objects can access class members.

	Polymorphism
	Abstract Classes

