
Programming Languages:OO Paradigm, Class Relations

Programming Languages:

OO Paradigm, Class Relations

Onur Tolga Şehitoğlu

Computer Engineering,METU

22 April 2008



Programming Languages:OO Paradigm, Class Relations

Outline

1 Class Relations

2 Aggragate

3 Composition
Integrity of Contained Objects

4 Generalization/Inheritance
Integrity of Superclass
Member Hiding

5 Multiple Inheritance
Virtual base class



Programming Languages:OO Paradigm, Class Relations

Class Relations

Class Relations

In Object Oriented paradigm objects
interact in order to solve a problem.

Basic class relations:

Aggragate (“has a”)
Composition (“has a”)
Generalization (inheritance, “is a”)

Other associations/relations exist.

When two classes have such a
relation, one depends on the other.

Course

coursename

id

add()

drop()

Student

name

id

getinfo()

Aggragate

Mail

from

to

read()

delete()

MailHeader

headers

getnext()

MailBody

text

decode()

Composition

Person

name

getinfo()

Student

id

getinfo()

Instructor

pid

getinfo()

Generalization



Programming Languages:OO Paradigm, Class Relations

Aggragate

Aggragate

Class A can have 0 or more instance of class B

Lifetime of class B objects are independent of class A

Catalog relationship. In terms of references.

Members of class B are regular objects in scope of A
they are not in scope of A. So private members ... ?

class Course {

char name[40];
int no;
L i s t s t u d en t s ;

public:

void register( Student &a) {

s t uden t . i n s e r t (&a);
};

} ceng242 ;

void Student {

char name[30];
int no;

public:

void add(Course &c) {

c.register (*this );
}

};



Programming Languages:OO Paradigm, Class Relations

Composition

Composition

Class A can have 0 or more instance of class B
Lifetimes of class B objects depend on the class A object
Class B objects are destroyed when A is destroyed.
Members of class B are regular objects in scope of A
they are not in scope of A as in aggragate.

class FrameBox {

Shape frame ;
S t r i n g t e x t ;
double coordx , coordy ;

public:

Framebox(Frame & f ,
S t r i n g & t ) {

...}

void draw() {

f rame .draw (); t e x t .draw ();

} ceng242 ;

class Shape {

enum Type { C i r c l e ,Rect} t ype ;
double s i z e x , s i z e y ;

public:

void draw ();

};

class S t r i n g {

...

};



Programming Languages:OO Paradigm, Class Relations

Composition

class FrameBox

Shape frame
Type type sizeof(int)
double coordx sizeof(double)
double coordy sizeof(double)

String text ... ...

double coordx sizeof(double)

double coordy sizeof(double)

Container class vs. contained classes

Composition nests storage of contained classes into container
class.

frame and text are regular object variables in member
functions of Framebox

Integrity of contained objects?



Programming Languages:OO Paradigm, Class Relations

Composition

class Student {

char name[40];
int i d ;

public:

Student () { name[0]=0; i d =0;}

void se tname id (const char * s ,int i );
...

};

class StudentAr r {

Student * con t en t ;
public:

StudentAr r (int s i z e ) {

con t en t =new Student [ s i z e ];
}

~ StudentAr r () { delete [] con t en t ;}
Student &operator []( int i ) {

return con t en t [ i ];
}

}

...

StudentAr r a[10];
a[5]. se tname id ("onur" ,55717);



Programming Languages:OO Paradigm, Class Relations

Composition

Integrity of Contained Objects

Integrity of Contained Objects

class A {

int x;
public:

A(int a) { x=a;}
};

class B {

int y;
public:

B(int a) { y=a;}
};

class C {

int c;
A a;
B b;

public:

C(int x,y, z):a(x),b(y) {

c= z; /* can refer a,b */

}

~C() { /* can refer a,b */}

};

When constructors called? Tip: Container class constructor
may refer to the contained objects.

When destructors called? Tip: Container class destructor may
refer to the contained objects.



Programming Languages:OO Paradigm, Class Relations

Composition

Integrity of Contained Objects

Constructors of contained objects called just before the body
of container constructor executed.

Destructors of contained objects called just after the container
destructor called.

Container constructor can pass arguments to member object
constructors.
ACons(int x):a(x),b(x),c(x) {...}

friend declaration can be used if the objects need to access
others private member.



Programming Languages:OO Paradigm, Class Relations

Generalization/Inheritance

Generalization/Inheritance

Class Circle is a Shape but has extra features.

It has all members of Shape plus specific ones.

Circle extends Shape

Shape is super class of Circle

Shape is more general, Circle has more information

class Shape {

double x,y;
public:

Shape(double a, double b);
void draw ();

};

class C i r c l e : public Shape {

double r a d i u s ;

public:

void draw ();

};

class Square : public Shape {

double width ;
public:

void draw ();

};



Programming Languages:OO Paradigm, Class Relations

Generalization/Inheritance

Circle
Shape
double x sizeof(double)

double y sizeof(double)

double radius sizeof(double)

There is an inherent Shape object in each Circle object.

Env(Circle ) = Env(Shape) ∪ Members specific to Circle

All members are inherited. They are in the scope of the
subclass.

How about their accessibility, protection?

Two new thing: protected label, derivation label

A subclass can access protected members of the upper classes.

derivation label is a filter defining how members of superclass
interpreted when used through subclass (object of subclass or
further derivations from subclass)



Programming Languages:OO Paradigm, Class Relations

Generalization/Inheritance

class A {

private: int a;
protected: int b;
public: int c;

void Amember() { ©1 }

} Aobj ;

class B: DLABEL A { // DLABEL=public| protected|private

void Bmember() { ©2 };

} Bobj;
... Aobj.©3 ;

... Bobj.©4 ;

class C: public B {

void Cmember() { ©5 } };

©1 ©2 ©3
a

√ × ×
b

√ √ ×
c

√ √ √

©4 ©5
DLABEL a b c a b c

private × × × × × ×
protected × × × × √ √

public × × √ × √ √

DLABEL is only significant outside of the derived class

protection is minimum of original label and DLABEL



Programming Languages:OO Paradigm, Class Relations

Generalization/Inheritance

Integrity of Superclass

The inherent superclass object should have a valid value.

Constructors/Destructors should be called

class A {

int x;
public:

A(int a) { x=a;}
~A() { ... }

};

class B : public A {

int y;
public:

B(int a):A(a) { y=a;}
~B() { ... }

};

Similar to contained objects:
Superclass constructor called just before class constructor
Superclass destructor called just after class destructor



Programming Languages:OO Paradigm, Class Relations

Generalization/Inheritance

Member Hiding

Member Hiding

members of the subclass hides member of the superclass with
same name

but superclass member still exists

Scope operator can be used to access the member

class A {

protected:

int x;
public:

int get () {return x};
} Aobj;
class B : public A {

int x;
public:

int get () {return x+A::x}
} Bobj;
...

cout << Bobj. get () << Bobj.A::get() ;



Programming Languages:OO Paradigm, Class Relations

Multiple Inheritance

Multiple Inheritance

Can a class be derived from two superclasses?

Land vehicle+Water vehicle → Hoovercraft

Student+Instructor → A lecturer still having PhD

A class hierarchy for vehicle types, a class hierarchy for
engines:
A boat with diesel engine, a car with electrical engine or
hybrid engine

Multiple inheritance is necessary in some rare cases. C++
provides it, Java avoids it and uses Interfaces for essential
functionality similar to multiple inheritance.



Programming Languages:OO Paradigm, Class Relations

Multiple Inheritance

c l a s s Shape {
i n t x , y ;

pub l i c :
Shape ( i n t a , i n t b ) { x=a ; y=b ;}
˜Shape ( ) { . . . }

} ;
enum L i n e S t y l e {None , So l i d , Dashed , Dotted , Double}
enum F i l l S t y l e {None , Fu l l , Ha l f , Pa t t e rn }
c l a s s ShapeAtt r {

L i n e S t y l e l s ; double lw ; F i l l S t y l e f i l l ;
pub l i c :

ShapeAtt r ( L i n e S t y l e a , double b , F i l l S t y l e c ) {
l s=a ; lw=b ; f i l l =c ;}

˜ ShapeAtt r ( ) { . . . }
} ;

c l a s s C i r c l e : pub l i c Shape , pub l i c ShapeAtt r {
i n t r a d i u s ;

pub l i c :
C i r c l e ( i n t a , i n t b , i n t c , L i n e S t y l e d ,

double e , F i l l S t y l e f ) : Shape ( a , b ) , ShapeAtt r (d , e , f ) {
r a d i u s=c ;

}
}



Programming Languages:OO Paradigm, Class Relations

Multiple Inheritance

Virtual base class

Diamond Problem

Multiple inheritance may cause
same super class duplicated in
the resulting class

Causes ambiguity.
StudInst contains two Person’s
get() call refers to which one?
What’s the name ?

Ambiguity can be solved by
scope operator:
Student::name vs Instructor ::name

But a person with two names?
Do we need that redundancy?
NO!

Person

name

get()

Student

sid

Instructor

ssn

StudInst



Programming Languages:OO Paradigm, Class Relations

Multiple Inheritance

Virtual base class

Virtual base class

virtual keyword used
in inheritance gets only a single copy of base class in subclasses.

class Person {

char name[40];
public: Person (char * s ) {...}

};

class Student : virtual Person {

int i d ;

public: Student (char * s , int i ):Person ( s ) {...}

};

class I n s t r u c t o r : virtual Person {

int s sn ;
public: I n s t r u c t o r (char * s , int i ):Person ( s ) {...}

};

class S tud I n s t :public Student , public I n s t r u c t o r {

public: S tud I n s t (char * s , int a, int b)
:Person ( s ), Student ( s ,a), I n s t r u c t o r ( s ,b) {...}

};



Programming Languages:OO Paradigm, Class Relations

Multiple Inheritance

Virtual base class

virtual keyword is for subclasses

It is an overloaded keyword. We also have virtual member
functions which is completely different.

Multiple inheritence is not essential feature in OOP.

There are ways to live without it. Assume two hierarchies with
M and N classes. First is under Vehicle, second is Engine

Bridge pattern Put a Engine* member in Vehicle

Nested classes Create all M×N possibilities derived from Vehicle

Such cases are rare and primary purpose of inheritance is
Polymorhism


	Class Relations
	Aggragate
	Composition
	Integrity of Contained Objects

	Generalization/Inheritance
	Integrity of Superclass
	Member Hiding

	Multiple Inheritance
	Virtual base class


