
Programming Languages:Type Systems

Programming Languages:

Type Systems

Onur Tolga Şehitoğlu

Computer Engineering,METU

20 March 2008

Programming Languages:Type Systems

1 Type Systems

2 Polymorphism
Inclusion Polymorphism
Parametric Polymorphism

3 Overloading

4 Coercion

5 Type Inference

Programming Languages:Type Systems

Type Systems

Type Systems

Design choices for types:

monomorphic vs polymorphic type system.

overloading allowed?

coercion(auto type conversion) applied, how?

type relations and subtypes exist?

Programming Languages:Type Systems

Polymorphism

Polymorphism

Monomorphic types: Each value has a single specific type.
Functions operate on a single type. C and most languages are
monomorphic.

Polymorphism: A type system allowing different data types
handled in a uniform interface:

1 Ad-hoc polymorphism: Also called overloading. Functions that
can be applied to different types and behave differently.

2 Inclusion polymorphism: Polymorphism based on subtyping
relation. Function applies to a type and all subtypes of the
type (class and all subclasses).

3 Parametric polymorphism: Functions that are general and can
operate identically on different types

Programming Languages:Type Systems

Polymorphism

Inclusion Polymorphism

Subtyping

C types:
char ⊆ short ⊆ int ⊆ long

Need to define arithmetic operators on them separately?

Consider all strings, alphanumeric strings, all strings from
small letters, all strings from decimal digits.
Ned to define special concatenation on those types?

f : T → V , U ⊆ T ⇒ f : U → V

Most languages have arithmetic operators operating on
different precisions of numerical values.

Programming Languages:Type Systems

Polymorphism

Inclusion Polymorphism

Inheritance

struct Point { int x, y; };

struct Circle { int x, y, r; };

struct Square { int x, y, a; };

struct Rectangle { int x, y, w, h; };

void move (Point p, int nx, int ny) {

p.x=nx; p.y=ny;}

Moving a circle or any other shape is too different?
Shape: x, y

Point: Circle: r Square: a Rectangle: w, h

Programming Languages:Type Systems

Polymorphism

Inclusion Polymorphism

Haskell extensible records:

import Hugs.Trex; -- Only in -98 mode !!!

type Shape = Rec (x::Int , y::Int)
type C i r c l e = Rec (x::Int , y::Int , r ::Int)
type Square = Rec (x::Int , y::Int , w::Int)

type Rec tang l e = Rec (x::Int , y::Int , w::Int , h::Int)

move (x= ,y= | r e s t) b c = (x=b,y=c| r e s t)

(a::Shape)=(x=12,y =24)
(b:: C i r c l e)=(x=12, y=24, r =10)
(c:: Square)=(x=12, y=24,w=4)

(d:: Rec tang l e)=(x=12,y=24,w=10,h=5)

Main> move b 4 5

(r = 10, x = 4, y = 5)

Main> move c 4 5

(w = 4, x = 4, y = 5)

Main> move d 4 5

(h = 5, w = 10, x = 4, y = 5)

Programming Languages:Type Systems

Polymorphism

Inclusion Polymorphism

Haskell Classes

Subtyping hierarchy based on classes

An instance implements interface functions of the class

Functions operating on classes (using interface functions) can
be defined

DataStr: insert, get, isempty

Stack Queue listinsert

<<uses>>

listinsert :: DataStr a ⇒ (a v) → [v] → (a v)

Called interface in OO programming

Programming Languages:Type Systems

Polymorphism

Inclusion Polymorphism

class DataStr a where

insert :: (a v) -> v -> (a v)
get :: (a v)-> Maybe (v ,(a v))
i s empty :: (a v) -> Bool

instance DataStr Stack where

insert x v = push v x
get x = pop x
i s empty Empty = True

i s empty = False

instance DataStr Queue where

insert x v = enqueue v x
get x = dequeue x
i s empty EmptyQ = True

i s empty = False

i n s e r t l i s t :: DataStr a => (a v) -> [v] -> (a v)
i n s e r t l i s t x [] = x
i n s e r t l i s t x (e l : r e s t) = i n s e r t l i s t (insert x e l) r e s t

data Stack a = Empty | St [a] deriving Show

data Queue a = EmptyQ | Qu [a] deriving Show

Programming Languages:Type Systems

Polymorphism

Parametric Polymorphism

Parametric Polymorphism

Polymorphic types: A value can have multiple types.
Functions operate on multiple types uniformly

identity x = x function. type: α → α

identity 4 : 4, identity "ali" : ”ali” , identity
(5,"abc") : (5,”abc”)
int → int, String → String , int × String → int × String

compose f g x = f (g x) function
type: (β → γ) → (α → β) → α → γ

compose square double 3 : 36,
(int → int) → (int → int) → int → int.
compose listsum reverse [1,2,3,4] : 10
([int] → int) → ([int] → [int]) → [int] → int

Programming Languages:Type Systems

Polymorphism

Parametric Polymorphism

filter f [] = []

filter f (x:r) = if (f x) then x:(filter f r) else (filter r)

(α → Bool) → [α] → [α]
filter ((<) 3) [1,2,3,4,5,6] : [4,5,6]
(int → Bool) → [int] → [int]
filter identity [True, False, True, False] :
[True,True]
(Bool → Bool) → [Bool] → [Bool]

Operations are same, types are different.

Types with type variables: polytypes

Most functional languages are polymorphic

Object oriented languages provide polymorphism through
inheritance

Programming Languages:Type Systems

Overloading

Overloading

Overloading: Using same identifier for multiple places in same
scope

Example: Two different functions, two distinct types, same
name.

Polymorphic function: one function that can process multiple
types.

C++ allows overloading of functions and operators.

typedef struct Comp { double x, y; } Complex;
double mult(double a, double b) { return a*b; }

Complex mult(Complex s , Complex u) {

Complex t ;
t .x = s .x*u.x - s .y*u.y;
t .y = s .x*u.y + s .y*u.x;
return t ;

}

Complex a,b; double x,y; ... ; a=mult(a,b) ; x=mult(y ,2.1);

Programming Languages:Type Systems

Overloading

Binding is more complicated. not only according to name but
according to name and type

Function type:

name : parameters → result

Context dependent overloading :
Overloading based on function name, parameter type and
return type.

Context independent overloading : Overloading based on
function name and parameter type. No return type!

Programming Languages:Type Systems

Overloading

Context dependent overloading

Which
type does the expression calling the function expects (context) ?

int f (double a) {©1 }

int f (int a) {©2 }

double f (int a) {©3 }

double x,y;
int a,b;

a=f(x); ©1 (x double)
a=f(a); ©2 (a int, assign int)
x=f(a); ©3 (a int, assign double)
x=2.4+f(a); ©3 (a int, mult double)
a=f(f(x)); ©2(©1) (x double, f(x):int, assign int)

a=f(f(a)); ©2(©2) or ©1(©3) ???

Problem gets more complicated. (even forget about coercion)

Programming Languages:Type Systems

Overloading

Context independent overloading

Context dependent overloading is more expensive.
Complex and confusing. Useful as much?
Most overloading languages are context independent.
Context independent overloading forbids ©2 and ©3 functions
defined together.
“name: parameters” part should be unique in “name:
parameters → result”, in the same scope
Overloading is not much useful. So languages avoid it.

Use carefully:

Overloading is useful only for functions doing same operations.
Two functions with different purposes should not be given same
names. Confuses programmer and causes errors

Is variable overloading possible? What about same name for
two types?

Programming Languages:Type Systems

Coercion

Coercion

Making implicit type conversion for ease of programming.

double x; int k;
x = k+4.2; /* x = (double) k + 4.2 */

k = x +3.45; /* k=(int) (x+3.45); */

k = x+2; /* k=x+(double)2; */

k = x+k -2; /* k=(int)(x+ (double)k - (double)2) ; */

C makes int ↔ double coercions and pointer coercions (with
warning)

Are other type of coercions are possible? (like A * → A, A →

A *). Useful?

May cause programming errors: x=k=3.25 : x becomes 3.0

Coercion + Overloading: too complex.

Most newer languages quit coercion completely (Strict type
checking)

Programming Languages:Type Systems

Type Inference

Type Inference

Type system may force user to declare all types (C and most
compiled imperative languages), or

Language processor infers types. How?

Each expression position provide information (put a
constraint) on type inference:

Equality e = x , x :: α, y :: β ⇒ α ≡ β

Expressions e = a + f x ,+ :: Num → Num → Num ⇒

a :: Num, f :: α → Num, e :: Num

Function application e = f x ⇒ e :: β, x :: α, f :: (α → β)
Type constructors f (x : r) = t ⇒ x :: α, t :: β, f :: ([α] → β)

Inference of all values start from the most general type (i.e:
any type α)

Type inference finds the most general type satisfying the
constraints.

	Type Systems
	Polymorphism
	Inclusion Polymorphism
	Parametric Polymorphism

	Overloading
	Coercion
	Type Inference

