1 Type Systems

2 Polymorphism
 - Inclusion Polymorphism
 - Parametric Polymorphism

3 Overloading

4 Coercion

5 Type Inference
Design choices for types:

- monomorphic vs polymorphic type system.
- overloading allowed?
- coercion (auto type conversion) applied, how?
- type relations and subtypes exist?
Polymorphism

- **Monomorphic** types: Each value has a single specific type. Functions operate on a single type. C and most languages are monomorphic.

- **Polymorphism**: A type system allowing different data types handled in a uniform interface:
 1. **Ad-hoc polymorphism**: Also called overloading. Functions that can be applied to different types and behave differently.
 2. **Inclusion polymorphism**: Polymorphism based on subtyping relation. Function applies to a type and all subtypes of the type (class and all subclasses).
 3. **Parametric polymorphism**: Functions that are general and can operate identically on different types.
Subtyping

- C types:
 \[\text{char} \subseteq \text{short} \subseteq \text{int} \subseteq \text{long} \]

- Need to define arithmetic operators on them separately?

- Consider all strings, alphanumeric strings, all strings from small letters, all strings from decimal digits.
 Need to define special concatenation on those types?

- \(f : T \rightarrow V , \; U \subseteq T \Rightarrow f : U \rightarrow V \)

- Most languages have arithmetic operators operating on different precisions of numerical values.
Inheritance

- struct Point { int x, y; };
- struct Circle { int x, y, r; };
- struct Square { int x, y, a; };
- struct Rectangle { int x, y, w, h; };

- void move (Point p, int nx, int ny) {
 p.x=nx; p.y=ny;
}

- Moving a circle or any other shape is too different?
Haskell extensible records:

```haskell
import Hugs.Trex; -- Only in -98 mode!!!

type Shape = Rec (x::Int, y::Int)
type Circle = Rec (x::Int, y::Int, r::Int)
type Square = Rec (x::Int, y::Int, w::Int)
type Rectangle = Rec (x::Int, y::Int, w::Int, h::Int)

move (x=_,y=_|rest) b c = (x=b,y=c|rest)

(a::Shape)=(x=12,y=24)
(b::Circle)=(x=12,y=24,r=10)
(c::Square)=(x=12,y=24,w=4)
(d::Rectangle)=(x=12,y=24,w=10,h=5)

Main> move b 4 5
(r = 10, x = 4, y = 5)
Main> move c 4 5
(w = 4, x = 4, y = 5)
Main> move d 4 5
(h = 5, w = 10, x = 4, y = 5)
```
Haskell Classes

- Subtyping hierarchy based on classes
- An instance implements interface functions of the class
- Functions operating on classes (using interface functions) can be defined

```
DataStr: insert, get, isempty
```

```
listinsert :: DataStr a ⇒ (a v) → [v] → (a v)
```

- Called **interface** in OO programming
```haskell
class DataStr a where
    insert :: (a v) -> v -> (a v)
    get :: (a v) -> Maybe (v, (a v))
    isempty :: (a v) -> Bool

instance DataStr Stack where
    insert x v = push v x
    get x = pop x
    isempty Empty = True
    isempty _ = False

instance DataStr Queue where
    insert x v = enqueue v x
    get x = dequeue x
    isempty EmptyQ = True
    isempty _ = False

insertlist :: DataStr a => (a v) -> [v] -> (a v)
insertlist x [] = x
insertlist x (el:rest) = insertlist (insert x el) rest

data Stack a = Empty | St [a] deriving Show
data Queue a = EmptyQ | Qu [a] deriving Show
```
Parametric Polymorphism

- **Polymorphic** types: A value can have multiple types. Functions operate on multiple types uniformly.

- identity \(x = x \) function. type: \(\alpha \rightarrow \alpha \)
 identity \(4 : 4 \), identity "ali" : "ali" , identity \((5,"abc") : (5,"abc") \)
 \(\text{int} \rightarrow \text{int} , \text{String} \rightarrow \text{String} , \text{int} \times \text{String} \rightarrow \text{int} \times \text{String} \)

- compose \(f \ g \ x = f \ (g \ x) \) function
 type: \((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma \)
 compose square double \(3 : 36 \),
 \((\text{int} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{int}) \rightarrow \text{int} \rightarrow \text{int} \).
 compose listsum reverse \([1,2,3,4] : 10 \)
 \(([\text{int}] \rightarrow \text{int}) \rightarrow ([\text{int}] \rightarrow [\text{int}]) \rightarrow [\text{int}] \rightarrow \text{int} \)
Programming Languages: Type Systems

Polymorphism

Parametric Polymorphism

\[
\text{filter } f \ [\] = [\]
\]
\[
\text{filter } f \ (x:r) = \text{if } (f \ x) \ \text{then } x: \text{(filter } f \ r) \ \text{else } \text{(filter } r)
\]
\[
(\alpha \to \text{Bool}) \to [\alpha] \to [\alpha]
\]
\[
\text{filter } ((<) \ 3) \ [1,2,3,4,5,6] : [4,5,6]
\]
\[
(int \to \text{Bool}) \to [\text{int}] \to [\text{int}]
\]
\[
\text{filter } \text{identity } [\text{True, False, True, False}] : [\text{True,True}]
\]
\[
(\text{Bool} \to \text{Bool}) \to [\text{Bool}] \to [\text{Bool}]
\]

Operations are same, types are different.

Types with type variables: polytypes

Most functional languages are polymorphic

Object oriented languages provide polymorphism through inheritance
Overloading

- **Overloading**: Using same identifier for multiple places in same scope
- Example: Two different functions, two distinct types, same name.
- Polymorphic function: one function that can process multiple types.
- C++ allows overloading of functions and operators.

```c
typedef struct Comp { double x, y; } Complex;
double mult(double a, double b) { return a*b; }
Complex mult(Complex s, Complex u) {
    Complex t;
    t.x = s.x*u.x - s.y*u.y;
    t.y = s.x*u.y + s.y*u.x;
    return t;
}
Complex a,b; double x,y; ... ; a=mult(a,b) ; x=mult(y,2.1);
```
Binding is more complicated. Not only according to name but according to name and type.

Function type:

\[\text{name} : \text{parameters} \rightarrow \text{result} \]

Context dependent overloading:
Overloading based on function name, parameter type and return type.

Context independent overloading: Overloading based on function name and parameter type. No return type!
Context dependent overloading

- Which type does the expression calling the function expects (context)?

```c
int f(double a) { ....① }
int f(int a) { ....② }
double f(int a) { ....③ }
double x, y;
int a, b;
```

- a = f(x); ① (x double)
 - a = f(a); ② (a int, assign int)
 - x = f(a); ③ (a int, assign double)
 - x = 2.4 + f(a); ③ (a int, mult double)
 - a = f(f(x)); ②(①) (x double, f(x):int, assign int)
 - a = f(f(a)); ②(②) or ①(③) ??

- Problem gets more complicated. (even forget about coercion)
Context independent overloading

- Context dependent overloading is more expensive.
- Complex and confusing. Useful as much?
- Most overloading languages are context independent.
- Context independent overloading forbids \(\mathcal{F}_2 \) and \(\mathcal{F}_3 \) functions defined together.
- “name: parameters” part should be unique in “name: parameters → result”, in the same scope.
- Overloading is not much useful. So languages avoid it.

Use carefully:

Overloading is useful only for functions doing same operations. Two functions with different purposes should not be given same names. Confuses programmer and causes errors.

- Is variable overloading possible? What about same name for two types?
Coercion

- Making implicit type conversion for ease of programming.

```c
double x; int k;
x = k + 4.2; /* x = (double) k + 4.2 */
k = x + 3.45; /* k = (int) (x + 3.45); */
k = x + 2; /* k = x + (double)2; */
k = x + k - 2; /* k = (int) (x + (double) k - (double)2); */
```

- C makes int ↔ double coercions and pointer coercions (with warning)

- Are other type of coercions are possible? (like A * → A, A → A *). Useful?

- May cause programming errors: x = k = 3.25 : x becomes 3.0

- Coercion + Overloading: too complex.

- Most newer languages quit coercion completely (Strict type checking)
Type Inference

- Type system may force user to declare all types (C and most compiled imperative languages), or
- Language processor infers types. How?
- Each expression position provide information (put a constraint) on type inference:
 - Equality $e = x, x :: \alpha, y :: \beta \Rightarrow \alpha \equiv \beta$
 - Expressions $e = a + f \times , + :: Num \rightarrow Num \rightarrow Num \Rightarrow$
 $a :: Num, f :: \alpha \rightarrow Num, e :: Num$
 - Function application $e = f \times \Rightarrow e :: \beta, x :: \alpha, f :: (\alpha \rightarrow \beta)$
 - Type constructors $f (x : r) = t \Rightarrow x :: \alpha, t :: \beta, f :: ([\alpha] \rightarrow \beta)$
- Inference of all values start from the most general type (i.e: any type α)
- Type inference finds the most general type satisfying the constraints.