Programming Languages/Values and Types

Onur Tolga Șehitoğlu
Computer Engineering, METU

Spring'2008

Outline

1 Value and Type
2 Primitive vs Composite Types
3 Cartesian Product
4 Disjoint Union
5 Mappings

- Arrays
- Functions

6 Powerset
7 Recursive Types

- Lists
- General Recursive Types
- Strings

8 Type Systems

- Static Type Checking
- Dynamic Type Checking

■ Type Equality
9 Type Completeness
10 Expressions
■ Literals/Variable and Constant Acces

- Aggregates
- Variable References
- Function Calls
- Conditional Expressions
- Iterative Expressions

11 Summary

What are Value and Type?

- Value anything that exist, that can be computed, stored, take part in data structure.
Constants, variable content, parameters, function return values, operator results...
- Type set of values of same kind. C types:

■ int, char, long,...

- float, double
- pointers
- structures: struct, union
- arrays
- Haskell types

■ Bool, Int, Float, ...
■ Char, String
■ tuples,(N-tuples), records

- lists
- functions

■ Each type represents a set of values. Is that enough? What about the following set? Is it a type? \{"ahmet", 1 , 4 , 23.453, 2.32, 'b'\}
■ Values should exhibit a similar behavior. The same group of operations should be defined on them.

Primitive vs Composite Types

■ Primitive Types: Values that cannot be decomposed into other sub values.
C: int, float, double, char, long, short, pointers Haskell: Bool, Int, Float, function values

- cardinality of a type: The number of distinct values that a datatype has. Denoted as: "\#Type". \#Bool $=2 \quad$ \#char $=256 \quad \#$ short $=2^{16}$ $\#$ int $=2^{32} \quad \#$ double $=2^{32}, \ldots$
- What does cardinality mean? How many bits required to store the datatype?

User Defined Primitive Types

- enumerated types
enum days \{mon, tue, wed, thu, fri, sat, sun\}; enum months \{jan, feb, mar, apr, ... \};
■ ranges (Pascal and Ada)
type Day = 1..31;
var g:Day;
- Discrete Ordinal Primitive Types Datatypes values have one to one mapping to a range of integers.
C: Every ordinal type is an alias for integers.
Pascal, Ada: distinct types
- DOPT's are important as they
i. can be array indices, switch/case labels
ii. can be used as for loop variable (some languages like pascal)

Composite Datatypes

User defined types with composition of one or more other datatypes. Depending on composition type:

- Cartesian Product (struct, tuples, records)
- Disjoint union (union (C), variant record (pascal), Data (haskell))
■ Mapping (arrays, functions)
- Powerset (set datatype (Pascal))
- Recursive compositions (lists, trees, complex data structures)

Cartesian Product

- $S \times T=\{(x, y) \mid x \in S, y \in T\}$
- Example:
$S=\{a, b, c\} \quad T=\{1,2\}$
$S \times T=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\}$
$\left.\begin{array}{l}\bullet \mathrm{a} \\ \bullet \mathrm{b} \\ \bullet \\ \bullet\end{array}+\begin{array}{l}\bullet 1 \\ \bullet 2 \\ \bullet(\mathrm{a}, 1) \\ \bullet(\mathrm{b}, 1) \\ \bullet(\mathrm{c}, 1) \\ \bullet(\mathrm{b}, 2) \\ \bullet(\mathrm{c}, 2)\end{array}\right)$
- $\#(S \times T)=\# S \cdot \# T$
- C struct, Pascal record, functional languages tuple
- in C: string \times int

```
struct Person {
    char name[20];
    int no;
} x = {"Osman}\sqcupHamdi", 23141}
```

- in Haskell: string \times int

```
type People=(String,Int)
(x::People) = ("Osman}\sqcupHamdi", 23141)
```

- Multiple Cartesian products: C: string \times int $\times\{$ MALE,FEMALE $\}$
struct Person \{ char name[20]; int no; enum Sex \{MALE, FEMALE\} sex;
$\} x=\left\{" O s_{m a n}^{\sqcup} H^{H a m i} ", 23141\right.$,FEMALE $\} ;$
Haskell: string \times int \times float \times String
$x=\left(" O s m a n_{\sqcup} H a m d i ", 23141,3.98\right.$, "Yazar")

Homogeneous Cartesian Products

- $S^{n}=\overbrace{S \times S \times S \times \ldots \times S}^{n}$ double ${ }^{4}$:
struct quad \{ double $x, y, z, q ;\} ;$
- $S^{0}=\{()\}$ is 0-tuple.
- not empty set. A set with a single value.
- terminating value (nil) for functional language lists.
- C void. Means no value. Error on evaluation.

Disjoint Union

$■ S+T=\{$ left $x \mid x \in S\} \cup\{$ right $x \mid x \in T\}$

- Example:
$S=\{1,2,3\} \quad T=\{3,4\}$
$S+T=\{$ left 1 , left 2 , left 3 , right 3 , right 4$\}$

■ $\#(S+T)=\# S+\# T$

- C union's are disjoint union?

■ C: int + double:
union number \{ double real; int integer; \} x;

- C union's are not safe! Same storage is shared. Valid field is unknown:

```
x.real=3.14; printf("%d\n",x.integer);
```

■ Haskel: Float $+\operatorname{Int}+(\operatorname{lnt} \times \operatorname{lnt})$:

```
data Number = Rea|Val Float | IntVa| Int | Rational (Int,Int)
x = Rational (3,4)
y = RealVal 3.14
z = IntVal 12 {-- You cannot access different values --}
```


Mappings

- The set of all possible mappings

■ $S \mapsto T=\{V \mid \forall(x \in S) \exists(y \in T),(x \mapsto y) \in V\}$
■ Example: $S=\{a, b\} \quad T=\{1,2,3\}$

Each color is a mapping value There are many others

$$
\begin{aligned}
& S \mapsto T=\{\{a \mapsto 1, b \mapsto 1\},\{a \mapsto 1, b \mapsto 2\},\{a \mapsto 1, b \mapsto 3\}, \\
& \{a \mapsto 2, b \mapsto 1\},\{a \mapsto 2, b \mapsto 2\},\{a \mapsto 2, b \mapsto 3\}, \\
& \{a \mapsto 3, b \mapsto 1\},\{a \mapsto 3, b \mapsto 2\},\{a \mapsto 3, b \mapsto 3\}\} \\
& \#(S \mapsto T)=\# T \# S
\end{aligned}
$$

Arrays

- double $\mathrm{a}[3]=\{1.2,2.4,-2.1\}$;
$a \in(\{0,1,2\} \mapsto$ double $)$
$\mathrm{a}=(0 \mapsto 1.2,1 \mapsto 2.4,2 \mapsto-2.1)$
- Arrays define a mapping from an integer range (or DOPT) to any other type
■ C: $T \mathrm{x}[N] \Rightarrow \mathrm{x} \in(\{0,1, \ldots, N-1\} \mapsto T)$
■ Other array index types (Pascal):

```
type
    Day = (Mon,Tue,Wed,Thu, Fri,Sat,Sun);
    Month = (Jan,Feb,Mar,Apr,May,Jun, Jul,Aug, Sep,Oct,Nov, Dec);
var
    x : array Day of real;
    y : array Month of integer;
    x[Tue] := 2.4;
    y[Feb] := 28;
```


Functions

- C function:

```
int f(int a) {
    if (a%2 == 0) return 0;
    else return 1;
}
```

■ $\mathrm{f}: \operatorname{int} \mapsto\{0,1\}$
regardless of the function body: $\mathrm{f}:$ int \mapsto int
■ Haskell:
f a $=$ if \bmod a $2==0$ then 0 else 1
■ in C, f expression is a pointer type int (*) (int) in Haskell it is a mapping: int \mapsto int

Array and Function Difference

Functions

Arrays:

- Values stored in memory
- Restricted: only integer domain
- double \mapsto double ?
- Defined by algorithms

■ Efficiency, resource usage

- All types of mappings possible
■ Side effect, output, error, termination problem.
- Cartesian mappings: double a[3] [4]; double f (int m, int n);
■ int \times int \mapsto double and int $\mapsto($ int \mapsto double)

Cartesian Mapping vs Nested mapping

■ Pascal arrays

```
var
        x : array [1..3,1..4] of double;
    y : array [1..3] of array [1..4] of double;
x[1,3] := x[2,3]+1; y[1,3] := y[2,3]+1;
```

Row operations:

$$
\begin{array}{lll}
\mathrm{y}[1] & :=\mathrm{y}[2] & ; \\
\mathrm{x}[1] & :=\mathrm{x}[2] & ;
\end{array}
$$

■ Haskell functions:
$f(x, y)=x+y$
$g \times y=x+y$
f $(3+2)$
g 32

- g 3
f 3
- Reuse the old definition to define a new function:
increment = g 1
increment 1
2

Powerset

- $\mathcal{P}(S)=\{T \mid T \subseteq S\}$
- The set of all subsets
- $S=\begin{aligned} & \bullet 1 \\ & \bullet 2 \\ & \bullet 3\end{aligned} \quad \mathcal{P}(S)=\begin{array}{ll}\bullet \emptyset\{1\} & \bullet\{2\} \\ \bullet\{1,2\} & \bullet\{1,3\} \\ \bullet\{2,3\} & \bullet\{1,2,3\}\end{array}$
- $\# \mathcal{P}(S)=2^{\# S}$
- Set datatype is restricted and special datatype. Only exists in Pascal and special set languages like SetL
- set operations (Pascal)

```
type
    color = (red,green,blue,white,black);
    colorset = set of color;
```

var
a,b : colorset;
a $:=$ [red, blue];
b := a*b; (* intersection *)
b : = a+[green, red]; (* union *)
b := a-[blue]; (* difference *)
if (green in b) then ... (* element test *)
if (a = []) then ... (* set equality *)

- in C++ supported by library.

Recursive Types

■ $S=\ldots S \ldots$
■ Types including themselves in composition.

Lists

■ $S=\operatorname{Int} \times S+\{n u l /\}$

$$
\begin{aligned}
S= & \{\text { right empty }\} \cup\{\text { left }(x, \text { empty }) \mid x \in \operatorname{Int}\} \cup \\
& \{\text { left }(x, \text { left }(y, \text { empty })) \mid x, y \in \operatorname{Int}\} \cup \\
& \{\text { left }(x, \text { left }(y, \text { left }(z, \text { empty }))) \mid x, y, z \in \operatorname{Int}\} \cup \ldots
\end{aligned}
$$

- $S=$
$\{$ right empty, left(1, empty), left(2, empty), left(3, empty), \ldots, left(1, left (1, empty)), left(1, left (2, empty)), left(1, left(3, empty $)$, left($1, \operatorname{left}(1$, left(1, empty $))$), left($1, \operatorname{left}(1, \operatorname{left}(2$, empty $))), \ldots\}$
- C lists: pointer based. Not actual recursion.

```
struct List {
    int x;
    List *next;
} a;
```

- Haskell lists.

```
data List = Left (Int,List) | Empty
x = Left (1, Left(2, Left(3,Empty)))
y = Empty
--}
```

■ Polymorphic lists: a single definition defines lists of many types.

- List $\alpha=\alpha \times($ List $\alpha)+\{$ empty $\}$

```
data List alpha = Left (alpha,List alpha) | Empty
x = Left (1, Left(2, Left(3,Empty)))
y = Left ("ali",Left("ahmet",Empty))
z = Left(23.1, Left(32.2,Left(1.0,Empty))){-- [23.1,32.2,1.0]
```

■ Left (1, Left("ali", Left(15.23, Empty) $\in \operatorname{List} \alpha$? No. Most languages only permits homogeneous lists.

Haskell Lists

■ binary operator ":" for list construction:

```
    data [alpha] = (alpha : [alpha]) | []
■ x = (1: (2: (3: [])))
```

- Syntactic sugar:

$$
\begin{aligned}
& {[1,2,3] \equiv(1:(2:(3:[])))} \\
& {[" a l i "] \equiv(" a l i ":[])}
\end{aligned}
$$

L Recursive Types

$\left\llcorner_{\text {General Recursive Types }}\right.$

General Recursive Types

■ $T=\ldots T \ldots$
■ Formula requires a minimal solution to be representable:
$S=\ln t \times S$
Is it possible to write a single value? No minimum solution here!

- List example:
$\mathrm{x}=\operatorname{Left}(1, \operatorname{Left}(2, \mathrm{x}))$
$x \in S$? Yes
can we process $[1,2,1,2,1,2, \ldots]$ value?
■ Some languages like Haskell lets user define such values. All iterations go infinite. Useful in some domains though.
■ Most languages allow only a subset of S, the subset of finite values.

$\square_{\text {General Recursive Types }}$

- Tree $\alpha=$ empty + node $\alpha \times$ Tree $\alpha \times$ Tree α

$$
\begin{aligned}
\text { Tree } \alpha= & \{\text { empty }\} \cup\{\text { node }(x, \text { empty, empty }) \mid x \in \alpha\} \cup \\
& \{\operatorname{node}(x, \operatorname{node}(y, \text { empty }, \text { empty }), \text { empty }) \mid x, y \in \alpha\} \cup \\
& \{\operatorname{node}(x, \text { empty }, \operatorname{node}(y, \text { empty }, \text { empty })) \mid x, y \in \alpha\} \cup \\
& \{\operatorname{node}(x, \operatorname{node}(y, \text { empty }, \text { empty }), \operatorname{node}(z, \text { empty }, \text { empty })) \mid x, y, z \in \alpha\} \cup .
\end{aligned}
$$

- $\mathrm{C}++$ (pointers and template definition)

```
template<class Alpha>
struct Tree {
    Alpha x;
    Tree *left,*right;
```

$\}$ root;

- Haskell

```
data Tree alpha = Empty l
    Node (alpha,Tree alpha, Tree alpha)
x = Node (1,Node (2,Empty,Empty),Node(3,Empty,Empty))
y = Node(3,Empty,Empty)
```


Strings

Language design choice:
1 Primitive type (ML):
Language keeps an internal table of strings
2 Character array (C, Pascal, ...)
3 Character list (Haskell, Prolog, Lisp)

- Design choice affects the complexity and efficiency of: concatenation, assignment, equality, lexical order, decomposition

Type Systems

■ Types are required to provide data processing, integrity checking, efficiency, access controls. Type compatibility on operators is essential.

- Simple bugs can be avoided at compile time.
- Irrelevant operations:

$$
\begin{aligned}
& y=\text { true } * 12 ; \\
& x=12 ; x[1]=6 ; \\
& y=5 ; x \cdot a=4 ;
\end{aligned}
$$

- When to do type checking? Latest time is before the operation. Two options:
1 Compile time \rightarrow static type checking
2 Run time \rightarrow dynamic type checking

Static Type Checking

- Compile time type information is used to do type checking.

■ All incompatibilities are resolved at compile time. Variables have a fixed time during their lifetime.

- Most languages do static type checking

■ User defined constants, variable and function types:
■ Strict type checking. User has to declare all types (C, C++, Fortran,...)
■ Languages with type inference (Haskell, ML, Scheme...)
■ No type operations after compilation. All issues are resolved. Direct machine code instructions.

Dynamic Type Checking

- Run-time type checking. No checking until the operation is to be executed.

■ Interpreted languages like Lisp, Prolog, PHP, Perl, Python.

- A hypothetical language:

```
int whichmonth(input) {
    if (isinteger(input)) return input;
    else if (isstring(input))
        switch(input) {
        case "January": return 1;
        case "February": return 2;
        case "December": return 12;}
}
read(input) /* user input at run time? */
ay=whichmonth(input)
```

- Run time decision based on users choice is possible.

■ Has to carry type information along with variable at run time.

- Type of a variable can change at run-time (depends on the language).

Static vs Dynamic Type Checking

- Static type checking is faster. Dynamic type checking does type checking before each operation at run time. Also uses extra memory to keep run-time type information.
■ Static type checking is more restrictive meaning safer. Bugs avoided at compile time, earlier is better.
- Dynamic type checking is less restrictive meaning more flexible. Operations working on dynamic run-time type information can be defined.

Type Equality

- $S \stackrel{?}{\equiv} T$ How to decide?
- Name Equivalence: Types should be defined at the same exact place.
- Structural Equivalence: Types should have same value set. (mathematical set equality).
- Most languages use name equivalence.
- C example:

```
typedef struct Comp { double x, y;} Complex;
struct COMP { double x,y; };
struct Comp a;
Complex b;
struct COMP c;
a=b; /*Valid, equal types */
a=c; /* Compile error, incompatible types */
```


Structural Equality

$S \equiv T$ if and only if:
$1 S$ and T are primitive types and $S=T$ (same type),
2 if $S=A \times B, T=A^{\prime} \times B^{\prime}, A \equiv A^{\prime}$, and $B \equiv B^{\prime}$,
3 if $S=A+B, T=A^{\prime}+B^{\prime}$, and $\left(A \equiv A^{\prime}\right.$ and $\left.B \equiv B^{\prime}\right)$ or $\left(A \equiv B^{\prime}\right.$ and $\left.B \equiv A^{\prime}\right)$,
4 if $S=A \mapsto B, T=A^{\prime} \mapsto B^{\prime}, A \equiv A^{\prime}$ and $B \equiv B^{\prime}$,
5 if $S=\mathcal{P}(A), T=\mathcal{P}\left(A^{\prime}\right)$, and $A \equiv A^{\prime}$.
Otherwise $S \not \equiv T$

■ Harder to implement structural equality. Especially recursive cases.

- $T=\{$ nil $\}+A \times T, \quad T^{\prime}=\{n i l\}+A \times T^{\prime}$
$T=\{n i l\}+A \times T^{\prime}, \quad T^{\prime}=\{n i l\}+A \times T$
■ struct Circle $\{$ double $x, y, a ;\}$;
struct Square $\{$ double $x, y, a ;\}$;
Two types have a semantical difference. User errors may need less tolerance in such cases.
- Automated type conversion is a different concept. Does not necessarily conflicts with name equivalence.

```
enum Day {Mon, Tue, Wed, Thu, Fri, Sat, Sun} x;
x=3;
```


Type Completeness

- First order values:
- Assignment
- Function parameter
- Take part in compositions
- Return value from a function

■ Most imperative languages (Pascal, Fortran) classify functions as second order value. (C represents function names as pointers)
■ Functions are first order values in most functional languages like Haskell and Scheme .

- Arrays, structures (records)?
- Type completeness principle: First order values should take part in all operations above, no arbitrary restrictions should exist.

C Types:

	Primitive	Array	Struct	Func.
Assignment	$\sqrt{ }$	\times	$\sqrt{ }$	\times
Function parameter	$\sqrt{ }$	\times	$\sqrt{ }$	\times
Function return	$\sqrt{ }$	\times	$\sqrt{ }$	\times
In compositions	$\sqrt{ }$	\sqrt{n}	$\sqrt{ }$	\times

Haskell Types:
Variable definition
Function parameter Function return In compositions

Pascal Types:
Assignment
Function parameter Function return In compositions

Expressions

Program segments that gives a value when evaluated:
■ Literals
■ Variable and constant access

- Aggregates
- Variable references
- Function calls

■ Conditional expressions

- Iterative expressions (Haskell)

Literals/Variable and Constant Access

■ Literals: Constants with same value with their notation 123, 0755, Oxa12, 12451233L, -123.342, -1.23342e-2, 'c', '\021', "ayse", True, False

■ Variable and constant access: User defined constants and variables give their content when evaluated. int x ;
\#define pi 3.1416
$x=p i * r * r$

Aggregates

■ Used to compose composite values lexically.

$$
\begin{aligned}
& x=(12, \text { "ali", True }) \\
& y=\{\text { name="ali", no=12\}} \\
& f=\backslash x->x * x \\
& I=[1,2,3,4]
\end{aligned}
$$

```
{-- 3 Tuple --}
{-- record --}
{-- function --}
{-- recursive type, list --}
```

- C only has aggregates at definition. There is no aggregates in the executable expressions!

```
struct Person { char name[20], int no } p = {"Ali\sqcupCin", 332314
double dizi[3][2] = {{0,1}, {1.2,4}, {12, 1.4}};
p={"VeliபCin",123412}; X/* not possible!*/
```


Variable References

■ Variable access vs variable reference
■ value vs I-value

- pointers are not references! You can use pointers as references with special operators.
- Some languages regard references like first order values (Java, C++ partially)
- Some languages distinguish the reference from the content of the variable (Unix shells, ML)

LExpressions

LFunction Calls

Function Calls

- $F\left(G p_{1}, G p_{2}, \ldots, G p_{n}\right)$

■ Function name followed by actual parameter list. Function is called, executed and the returned value is substituted in the expression position.

- Actual parameters: parameters send in the call
- Formal parameters: parameter names used in function definition
- Operators can be considered as function calls. The difference is the infix notation.
- $\oplus(a, b)$ vs $a \oplus b$
- languages has built-in mechanisms for operators. Some languages allow user defined operators (operator overloading): C++, Haskell.

Conditional Expressions

- Evaluate to different values based on a condition.

■ Haskell: if condition then $\exp 1$ else $\exp 2$ case value of $p 1->\exp 1$; $p 2->\exp 2 \ldots$
■ C: (condition) $? \exp 1: \exp 2$;

- if .. else in C is not conditional expression but conditional statement. No value when evaluated!

```
x = (a>b)?a:b;
```

$y=((a>b) ? \sin : \cos)(x) ; \quad / *$ Does it work? try yourself

■ Haskell:

```
x = if (a>b) then a else b
y = (if (a>b) then (+) else (*)) x y
data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
convert a = case a of
    Left (x,rest) -> x : (convert rest)
    Empty -> []
daynumber g = case g of
    Mon -> 1
    Tue -> 2
    Sun -> 7
```

- case checks for a pattern and evaluate the RHS expression with substituting variables according to pattern at LHS.

Iterative Expressions

■ Expressions that do a group of operations on elements of a list or data structure, and returns a value.

■ [expr | variable <- list , condition]

- Similar to set notation in math: \{expr|var \in list, condition $\}$

$$
\begin{aligned}
& x=[1,2,3,4,5,6,7,8,9,10,11,12] \\
& y=[\text { a*2 } \mid \text { a }<-x] \\
& z=[\text { a } \mid \text { a }<-x, \bmod a 3==1]
\end{aligned}
$$

Summary

- Value and type

■ Primitive types

- Composite types

■ Recursive types
■ When to type check
■ How to type check

- Expressions

