CENG 477
Introduction to Computer Graphics

Viewing Transformations
Introduction

• Until now, we learned how to position the objects in the 3D world space by **modeling transformations**

• With **viewing transformations**, we position the objects on a 2D image as seen by a camera with arbitrary position and orientation

• Composed of three parts:
 – Camera (or eye) transformation
 – Projection transformation
 – Viewport transformation
Introduction

• With viewing transformations, we are now transitioning from the **backward rendering pipeline** (aka. ray tracing) to **forward rendering pipeline** (aka. object-order, rasterization, z-buffer)
Camera Transformation

• **Goal:** Given an arbitrary camera position e and camera vectors uvw, determine the camera coordinates of points given by their world coordinates

What are the coordinates of this cube with respect to the uvw CS?
Camera Transformation

• Transform everything such that uvw aligns with xyz
Camera Transformation

- **Step 1:** Translate e to the world origin $(0, 0, 0)$

\[
T = \begin{bmatrix}
1 & 0 & 0 & -e_x \\
0 & 1 & 0 & -e_y \\
0 & 0 & 1 & -e_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Camera Transformation

- **Step 2**: Rotate \(uvw \) to align it with \(xyz \):

\[
R = \begin{bmatrix}
u_x & u_y & u_z & 0 \\
x_x & v_y & v_z & 0 \\
w_x & w_y & w_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

We already learned how to do this in modeling transformations!
Camera Transformation

• The composite camera transformation is:

\[M_{cam} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

\[M_{cam} = \begin{bmatrix} u_x & u_y & u_z & -(u_x e_x + u_y e_y + u_z e_z) \\ v_x & v_y & v_z & -(v_x e_x + v_y e_y + v_z e_z) \\ w_x & w_y & w_z & -(w_x e_x + w_y e_y + w_z e_z) \\ 0 & 0 & 0 & 1 \end{bmatrix} \]
Camera Transformation

• When points are multiplied with this matrix, their resulting coordinates will be with respect to the uvw-e coordinate system (i.e. the camera coordinate system)

• Next, we need to apply a projection transformation
Projection Transformation

- Projection transformations depend on the shape of the viewing volume
- Two most commonly used transformations are:
 - Orthographic (parallel) projection
 - Perspective projection
Orthographic Transformation

• In both types of projections, our goal is to transform a given viewing volume to the canonical viewing volume (CVV):

Note that \(n \) and \(f \) are typically given as distances which are always positive and because we are looking towards the \(-z\) direction, the actual coordinates become \(-n\) and \(-f\)

Think of it as compressing a box
Orthographic Transformation

- In both types of projections, our goal is to transform a given viewing volume to the canonical viewing volume (CVV):

Also note the change in the z-direction. This makes objects further away from the camera to have larger z-values. In other words, CVV is a left-handed coordinate system.
Orthographic Projection

- We need to map the box with corners at \((l, b, -n)\) and \((r, t, -f)\) to the \((-1, -1, -1)\) and \((1, 1, 1)\) of the CVV.
- This is accomplished by the following matrix:

\[
M_{orth} = \begin{bmatrix}
\frac{2}{r - l} & 0 & 0 & -\frac{r + l}{r - l} \\
0 & \frac{2}{t - b} & 0 & -\frac{t + b}{t - b} \\
0 & 0 & -\frac{2}{f - n} & -\frac{f + n}{f - n} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Make sure you understand how to derive this!
Perspective Projection

• Perspective projection models how we see the real world
 – Objects appear smaller with distance

Perspective projection (P) Orthographic projection (O)
Perspective Projection

• We still have the same 6 parameters

- Camera
- Near distance (n)
- Far distance (f)
Perspective Projection

- To map to the canonical viewing volume (CVV), we take a two step approach:
 - **Step 1**: Map perspective to orthographic viewing volume
 - **Step 2**: Map orthographic to CVV

Think of this as compressing a box where you have to apply more pressure towards the back.

We already know how to perform the second step!
Perspective Projection

- The key observation is that more distant objects should shrink proportional to their distance to the camera.
- Here is a side view (therefore x is constant):

\[
\frac{y'}{y} = \frac{-n}{z} \quad \Rightarrow \quad y' = \frac{-n}{z} y
\]

The same geometrical config. applies to the x dimension as well:

\[
\frac{x'}{x} = \frac{-n}{z} \quad \Rightarrow \quad x' = \frac{-n}{z} x
\]

What is y’?

Let’s ignore the z dimension for the moment.
Perspective Projection

• How to represent this as a matrix multiplication?

$$M = \begin{bmatrix} -\frac{n}{z} & 0 & 0 & 0 \\ 0 & -\frac{n}{z} & 0 & 0 \\ 0 & 0 & \cdots & \cdots \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• The problem is our matrix now contains the coordinates of the transformed points

• This requires a different matrix for each point being transformed
 – Very inefficient and requires too much bookkeeping
Perspective Projection

• Homogeneous coordinates (HC) comes to the rescue here
• Remember that in HC:

\[
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} = \begin{bmatrix}
kx \\
ky \\
kz \\
k
\end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix}
-nx/z \\
-ny/z \\
\ldots \\
1
\end{bmatrix} = \begin{bmatrix}
mx \\
nx \\
\ldots \\
-1
\end{bmatrix}
\]

• So if the transformation manages to put \(-z\) into the last component, we can achieve the desired result
Perspective Projection

• This can also be represented as a matrix multiplication thanks to homogeneous coordinates:

\[
M_{p2o} = \begin{bmatrix}
 n & 0 & 0 & 0 \\
 0 & n & 0 & 0 \\
 0 & 0 & A & B \\
 0 & 0 & -1 & 0
\end{bmatrix}
\]

• Why does this work?
Perspective Projection

- Let’s multiply a point \([x, y, z, 1]^T\) with this matrix:

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix} = \begin{bmatrix}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & A & B \\
0 & 0 & -1 & 0
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
w
\end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix} = \begin{bmatrix}
nx \\
ny \\
Az + B \\
A - B / z
\end{bmatrix}
\]

Remember that in homogenous coordinates, scaling all components by the same factor does not change the point. So divide by the last comp.

\[
\begin{bmatrix}
x' \\
y' \\
z' \\
w'
\end{bmatrix} = \begin{bmatrix}
nx \\
ny \\
Az + B \\
A - B / z
\end{bmatrix} = \begin{bmatrix}
-nx/z \\
-ny/z \\
-A - B / z \\
1
\end{bmatrix}
\]
Perspective Projection

• For the z-axis, we have the following constrains:
 – (−n) maps to (−n)
 – (−f) maps to (−f)

• We can solve for A and B using these constrains
Perspective Projection

- Remember that we had:

\[z' = -A - \frac{B}{z} \]

- Now plug (-n) and (-f) and solve for the unknowns:

\[
\begin{align*}
-n &= -A + \frac{B}{n} \\
-f &= -A + \frac{B}{f}
\end{align*}
\]

\[\begin{aligned}
A &= f + n \\
B &= fn
\end{aligned} \]
Perspective Projection

• The final perspective to orthographic matrix becomes:

\[
M_{p2o} = \begin{bmatrix}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & f + n & fn \\
0 & 0 & -1 & 0 \\
\end{bmatrix}
\]

• Note that this was Step 1
• In Step 2, we multiply this matrix with the orthographic to canonical viewing volume transformation matrix
Perspective Projection

- The final perspective transformation matrix is:

\[M_{per} = M_{orth} M_{p2o} \]

\[M_{per} = \begin{bmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & f+n & 2fn \\
0 & 0 & -1 & f-n
\end{bmatrix} \]
Perspective Divide

• Note that after the perspective projection, \(w \) coordinates of transformed points may not be 1

• For the perspective projection to take effect, each point is divided by its \(w \) coordinate before the next stage

• This is called the **perspective divide**

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
\begin{array}{c}
\text{Perspective divide}
\end{array}
\begin{bmatrix}
 x/w \\
 y/w \\
 z/w \\
 1
\end{bmatrix}
\]
Viewport Transformation

- After perspective transformation (and perspective divide), all objects inside the viewing volume are transformed into CVV
- Viewport transformation maps them to the screen (window) coordinates
Viewport Transformation

- x values in range [-1,1] are transformed to [-0.5, n_x-0.5]
- y values in range [-1,1] are transformed to [-0.5, n_y-0.5]
- z values in range [-1,1] are transformed to [0,1] for later use in depth testing

\[
M_{vp} = \begin{bmatrix}
\frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\
0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\
0 & 0 & 1 & 1 \\
0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{bmatrix}
\]

Note that we don’t need to preserve the w component anymore
Z-Fighting

- Note that the \(z \)-values get compressed to \([0, 1]\) range from the \([-n:-f]\) range
- Observe how it looks for \(n = 10 \) and \(f = 50 \)
Z-Fighting

- Note that the z-values get compressed to [0, 1] range from the [-n:-f] range
- Observe the same for n = 10 and f = 200
Z-Fighting

• The compression is more severe for with larger depth range
• This may cause a problem known as z-fighting:
 – Objects with originally different z-values get mapped to the same final z-value (due to limited precision) making it impossible to distinguish which one is in front and which one is behind
Z-Fighting

• The compression is more severe for with larger depth range
• This may cause a problem known as z-fighting:
 – The problem is even worse if the input z-values are very close to begin with

To avoid z-fighting, the depth range should be kept as small as possible for keeping the compression less severe
Summary

• A point \([x_w, y_w, z_w]^T\) in the world coordinate system can be transformed to its viewport coordinates by:

\[
\begin{bmatrix}
 x_{vp} \\
 y_{vp} \\
 z_{vp}
\end{bmatrix} = M_{vp} M_{per} M_{cam} \begin{bmatrix}
 x_w \\
 y_w \\
 z_w \\
 1
\end{bmatrix}
\]

perspective divide
Summary

- If the point is defined in its local coordinate system and we are given modeling transformations we use:

\[
\begin{bmatrix}
 x_{vp} \\
 y_{vp} \\
 z_{vp}
\end{bmatrix}
= \begin{bmatrix}
 M_{vp} \\
 M_{per} \\
 M_{cam} \\
 M_{model}
\end{bmatrix}
\begin{bmatrix}
 x_l \\
 y_l \\
 z_l \\
 1
\end{bmatrix}
\]

perspective divide
Summary

• Remember that we transform only the vertices
• We must reconstruct the triangles (or other primitives) from their projected coordinates
• We must decide:
 – Which pixels belong to a primitive
 – Which fragment of which primitive is closest to the viewer
 – How to compute the color for each pixel, etc.
• Questions of this type are what we will focus on in the following weeks