CENG 477
Introduction to Computer Graphics
Viewing Transformations
Introduction

• Until now, we learned how to position the objects in the 3D world space by modeling transformations.
• With viewing transformations, we position the objects on a 2D image as seen by a camera with arbitrary position and orientation.
• Composed of three parts:
 – Camera (or eye) transformation
 – Projection transformation
 – Viewport transformation
Introduction

- With viewing transformations, we are now transitioning from the **backward rendering pipeline** (aka. ray tracing) to **forward rendering pipeline** (aka. object-order, rasterization, z-buffer)
Camera Transformation

- **Goal:** Given an arbitrary camera position \(e \) and camera vectors \(uvw\), determine the camera coordinates of points given by their world coordinates.

What are the coordinates of this cube with respect to the \(uvw\) CS?
Camera Transformation

• Transform everything such that \textbf{uvw} aligns with \textbf{xyz}
Camera Transformation

- **Step 1:** Translate \(\mathbf{e} \) to the world origin \((0, 0, 0)\)

\[
T = \begin{bmatrix}
1 & 0 & 0 & -e_x \\
0 & 1 & 0 & -e_y \\
0 & 0 & 1 & -e_z \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Camera Transformation

- **Step 2**: Rotate uvw to align it with xyz:

$$
R = \begin{bmatrix}
 u_x & u_y & u_z & 0 \\
 v_x & v_y & v_z & 0 \\
 w_x & w_y & w_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
$$

We already learned how to do this in modeling transformations!
Camera Transformation

• The composite camera transformation is:

\[
M_{\text{cam}} = \begin{bmatrix}
 u_x & u_y & u_z & 0 \\
 v_x & v_y & v_z & 0 \\
 w_x & w_y & w_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
 1 & 0 & 0 & -e_x \\
 0 & 1 & 0 & -e_y \\
 0 & 0 & 1 & -e_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
M_{\text{cam}} = \begin{bmatrix}
 u_x & u_y & u_z & -(u_x e_x + u_y e_y + u_z e_z) \\
 v_x & v_y & v_z & -(v_x e_x + v_y e_y + v_z e_z) \\
 w_x & w_y & w_z & -(w_x e_x + w_y e_y + w_z e_z) \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Camera Transformation

• When points are multiplied with this matrix, their resulting coordinates will be with respect to the \(\text{uvw-e} \) coordinate system (i.e. the camera coordinate system)
• Next, we need to apply a projection transformation
Projection Transformation

• Projection transformations depend on the shape of the viewing volume

• Two most commonly used transformations are:
 – Orthographic (parallel) projection
 – Perspective projection
Orthographic Transformation

• In both types of projections, our goal is to transform a given viewing volume to the *canonical viewing volume* (CVV):

Note that \(n \) and \(f \) are typically given as *distances* which are always positive and because we are looking towards the \(-z\) direction, the actual coordinates become \(-n\) and \(-f\)

Think of it as compressing a box
Orthographic Transformation

• In both types of projections, our goal is to transform a given viewing volume to the **canonical viewing volume (CVV)**:

Also note the change in the z-direction. This makes objects further away from the camera to have larger z-values. In other words, CVV is a **left-handed** coordinate system.
Orthographic Projection

- We need to map the box with corners at \((l, b, -n)\) and \((r, t, -f)\) to the \((-1, -1, -1)\) and \((1, 1, 1)\) of CVV
- This is accomplished by the following matrix:

\[
M_{\text{orth}} = \begin{bmatrix}
\frac{2}{r - l} & 0 & 0 & -\frac{r + l}{r - l} \\
0 & \frac{2}{t - b} & 0 & -\frac{t + b}{t - b} \\
0 & 0 & -\frac{2}{f - n} & -\frac{f + n}{f - n} \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Make sure you understand how to derive this!
Perspective Projection

- Perspective projection models how we see the real world
 - Objects appear smaller with distance

Perspective projection (P) Orthographic projection (O)
Perspective Projection

- We still have the same 6 parameters
Perspective Projection

- To map to the canonical viewing volume (CVV), we take a two step approach:
 - **Step 1**: Map perspective to orthographic viewing volume
 - **Step 2**: Map orthographic to CVV

Think of this as compressing a box where you have to apply more pressure towards the back.

We already know how to perform the second step!
Perspective Projection

- The key observation is that more distant objects should shrink proportional to their distance to the camera.
- Here is a side view (therefore x is constant):

$$\frac{y'}{y} = \frac{-n}{z} \quad \Rightarrow \quad y' = \frac{-n}{z} y$$

The same geometrical config. applies to x dimension as well:

$$\frac{x'}{x} = \frac{-n}{z} \quad \Rightarrow \quad x' = \frac{-n}{z} x$$

What is y'?

Let’s ignore the z dimension for the moment.
Perspective Projection

- This can also be represented as a matrix multiplication thanks to homogeneous coordinates:

\[
M_{p2o} = \begin{bmatrix}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & A & B \\
0 & 0 & -1 & 0
\end{bmatrix}
\]

- Why does this work?
Perspective Projection

- Let’s multiply a point \([x, y, z, 1]^T\) with this matrix:

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 n & 0 & 0 & 0 \\
 0 & n & 0 & 0 \\
 0 & 0 & A & B \\
 0 & 0 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 nx \\
 ny \\
 Az + B \\
 -z
\end{bmatrix}
\]

Remember that in homogenous coordinates, scaling all components by the same factor does not change the point. So divide by the last comp.

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 nx \\
 ny \\
 Az + B \\
 -z
\end{bmatrix} =
\begin{bmatrix}
 -nx/z \\
 -ny/z \\
 -A - B/z \\
 1
\end{bmatrix}
\]
Perspective Projection

• For the z-axis, we have the following constrains:
 – \((-n)\) maps to \((-n)\)
 – \((-f)\) maps to \((-f)\)

• We can solve for A and B using these constrains
Perspective Projection

• Remember that we had:

\[z' = -A - B/z \]

• Now plug \((-n)\) and \((-f)\) and solve for the unknowns:

\[
\begin{align*}
-n &= -A + B/n \\
-f &= -A + B/f
\end{align*}
\]

\[
\begin{align*}
A &= f + n \\
B &= fn
\end{align*}
\]
Perspective Projection

• The final perspective to orthographic matrix becomes:

\[M_{p2o} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & f + n & fn \\ 0 & 0 & -1 & 0 \end{bmatrix} \]

• Note that this was Step 1

• In step 2, we multiply this matrix with the orthographic to canonical viewing volume transformation matrix
Perspective Projection

• The final perspective transformation matrix is:

\[
M_{\text{per}} = M_{\text{orth}} M_{p2o}
\]

\[
M_{\text{per}} = \begin{bmatrix}
\frac{2n}{r - l} & 0 & \frac{r + l}{r - l} & 0 \\
0 & 2n & \frac{r + l}{r - l} & 0 \\
0 & \frac{2n}{t - b} & \frac{t + b}{t - b} & 0 \\
0 & 0 & -\frac{f + n}{f - n} & -\frac{2fn}{f - n} \\
0 & 0 & -1 & 0
\end{bmatrix}
\]
Viewport Transformation

• After perspective transformation, all objects inside the viewing volume are transformed into CVV
• **Viewport transformation** maps them to the screen (window) coordinates
Viewport Transformation

• x values in range [-1,1] are transformed to [-0.5, nx-0.5]
• y values in range [-1,1] are transformed to [-0.5, ny-0.5]
• z values in range [-1,1] are transformed to [0,1] for later use

\[M_{vp} = \begin{bmatrix}
\frac{n_x}{2} & 0 & 0 & \frac{n_x - 1}{2} \\
0 & \frac{n_y}{2} & 0 & \frac{n_y - 1}{2} \\
0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{bmatrix} \]

Note that we don’t need to preserve the w component anymore
Z-Fighting

- Note that the z-values get compressed to [0, 1] range from the [-n:-f] range
- Observe how it looks for n = 10 and f = 50
Z-Fighting

- Note that the z-values get compressed to [0, 1] range from the [-n:-f] range
- Observe the same for n = 10 and f = 200
Z-Fighting

• The compression is more severe for with larger depth range
• This may cause a problem known as z-fighting:
 – Objects with originally different z-values get mapped to the same final z-value (due to limited precision) making it impossible to distinguish which one is in front and which one is behind
Z-Fighting

• The compression is more severe for larger depth range.
• This may cause a problem known as z-fighting:
 – Problem is even worse if the input z-values are very close to begin with.

To avoid z-fighting, the depth range should be kept as small as possible for keeping the compressing less severe.
Summary

- A point \([x_w, y_w, z_w]^T\) in the world coordinate system can be transformed to its viewport coordinates by:

\[
\begin{bmatrix}
x_{vp} \\
y_{vp} \\
z_{vp}
\end{bmatrix} = M_{vp}M_{per}M_{cam} \begin{bmatrix}
x_w \\
y_w \\
z_w \\
1
\end{bmatrix}
\]

- If the point is defined in its local coordinate system and we are given modeling transformations we use:

\[
\begin{bmatrix}
x_{vp} \\
y_{vp} \\
z_{vp}
\end{bmatrix} = M_{vp}M_{per}M_{cam}M_{model} \begin{bmatrix}
x_l \\
y_l \\
z_l \\
1
\end{bmatrix}
\]