CENG – 477
Introduction to Computer Graphics
Rasterization
Rasterization

- Rasterization is concerned with creating **fragments** from vertices
- It works in screen coordinates – thus it is next step after the viewport transform
- **Goal:** Given a set of vertices which fragments must be “turned on” to create the primitive:

![Rasterization Diagram](image)
Rasterization

• Subproblems:
 – How to deal with different primitives
 – How to make it fast
 – How to interpolate color and other attributes

• We’ll start with line rasterization
Line Rasterization

- Several methods exist
- **Option 1**: Treat the line as a thin rectangle and turn on pixels that are inside this rectangle

![Too thin rectangle](image)
- May cause gaps in the line

![Too thick rectangle](image)
- Line thickness varies
Line Rasterization

• What must be the minimum thickness?

- May not draw anything if it is too thin

- Must be at least one to draw a horizontal line in some cases
Line Rasterization

- But a thickness of 1 may result in too thick lines

- $t=1$ this segment is >1
- $t=1$ thus may contain more than 1 pixel
Line Rasterization

• Thus, we need another solution
• We can use line equations to decide which pixels belong the line
• Assume that we want to draw a line between two screen coordinates: \((x_0, y_0)\) to \((x_1, y_1)\)
• Assume that the slope of the line, \(m\), is in range \((0, 1]\)

\[
m = \frac{y_1 - y_0}{x_1 - x_0}
\]

Which pixels should we draw?
Line Equation

• Let’s first remember the implicit line equation:

\[
f(x, y) = x(y_0 - y_1) + y(x_1 - x_0) + x_0y_1 - y_0x_1
\]

• We can derive it from geometry:

\[
n \cdot [x_1 - x_0, y_1 - y_0]^T = 0
\]
\[
n = [y_0 - y_1, x_1 - x_0]
\]
\[
f(p) = (p - p_0) \cdot n = 0
\]

What is the meaning of \(f(p) = 0\), \(f(p) > 0\) and \(f(p) < 0\)
The Basic Algorithm

• The basic algorithm is as follows:

\[
\begin{align*}
y &= y_0 \\
\text{for } x = x_0 \text{ to } x_1 \text{ do:} \\
&\quad \text{draw}(x, y) \\
&\quad \text{if } (\text{some condition}) \text{ then:} \\
&\quad \quad y = y + 1
\end{align*}
\]

• Because the slope is in \((0, 1]\), we always go right and sometimes go up (assuming that \(x_0 < x_1\) and \(y_0 < y_1\))
The Midpoint Algorithm

- Assume we have just drawn \((x, y)\). Which pixel to draw next?

\[
y = y_0 \\
\text{for } x = x_0 \text{ to } x_1 \text{ do:} \\
\quad \text{draw}(x, y) \\
\quad \text{if } f(x+1, y+0.5) < 0 \text{ then:} \\
\quad \quad y = y + 1
\]

We call these pixels E and NE
The Midpoint Algorithm

- This algorithm works well but requires evaluating the line equation at every iteration.
- This can be done with an incremental algorithm:

\[
\begin{align*}
M_1 & = (x_0, y_0) \\
M_2 & = (x_1, y_0 - y_1 + (x_1 - x_0))
\end{align*}
\]

- If we selected E, in the next iteration we need the value of \(f(M_1)\).
- If we selected NE, in the next iteration we need \(f(M_2)\).
- Both can be computed from \(f(M)\):

\[
\begin{align*}
f(M_1) - f(M) &= y_0 - y_1 \\
f(M_2) - f(M) &= (y_0 - y_1) + (x_1 - x_0)
\end{align*}
\]
The Midpoint Algorithm

- This algorithm works well but requires evaluating the line equation at every iteration.
- This can be done with an incremental algorithm:

 If we selected E, in the next iteration we need the value of \(f(M_1) \).

 If we selected NE, in the next iteration we need \(f(M_2) \).

 Both can be computed from \(f(M) \):

\[
\begin{align*}
 f(M_1) - f(M) &= y_0 - y_1 \\
 f(M_2) - f(M) &= (y_0 - y_1) + (x_1 - x_0)
\end{align*}
\]
The Midpoint Algorithm

• This algorithm works well but requires evaluating the line equation at every iteration
• This can be done with an incremental algorithm:

In other words, if we know \(f(M) \), we can compute the next \(f(M) \) by simple integer arithmetic

• What is the first \(f(M) \)?
• Note that \(f(x_0, y_0) = 0 \) as it is the starting point of the line

\[
f(M_0) = f(x_0 + 1, y_0 + 0.5) = (y_0 - y_1) + 0.5(x_1 - x_0)
\]
The Midpoint Algorithm

- So the overall algorithm is:

\[
y = y_0 \\
d = (y_0 - y_1) + 0.5(x_1 - x_0) \\
\text{for } x = x_0 \text{ to } x_1 \text{ do:} \\
\quad \text{draw}(x, y) \\
\quad \text{if } d < 0 \text{ then: } // \text{ choose NE} \\
\quad \quad y = y + 1 \\
\quad \quad d += (y_0 - y_1) + (x_1 - x_0) \\
\quad \text{else: } // \text{ choose E} \\
\quad \quad d += (y_0 - y_1)
\]
The Midpoint Algorithm

- For max efficiency, \(f(x, y) = 0 \) is written as \(2f(x, y) = 0 \). This entirely eliminates floating point operations:

\[
\begin{align*}
 y &= y_0 \\
 d &= 2(y_0 - y_1) + (x_1 - x_0) \\
 \text{for } x &= x_0 \text{ to } x_1 \text{ do:} \\
 &\quad \text{draw}(x, y) \\
 &\quad \text{if } d < 0 \text{ then: } // \text{ choose NE} \\
 &\quad \quad y = y + 1 \\
 &\quad \quad d += 2[(y_0 - y_1) + (x_1 - x_0)] \\
 &\quad \text{else: } // \text{ choose E} \\
 &\quad \quad d += 2(y_0 - y_1)
\end{align*}
\]
The Midpoint Algorithm

• The presented algorithm works when the slope of the line, m, is in range $(0, 1]$.
• For other slope ranges, minor modifications to the algorithm is required.
• For instance if $m \in (1, \infty)$, we need to swap the roles of x and y.
• Other cases must be adapted similarly.
Float vs Integer

• The midpoint algorithm was originally developed by Pitteway in 1967
• Floating point arithmetic was very expensive at the time
• Does it still matter?
• We implemented both algorithms and drew one million lines each between 1000 and 1400 pixels long:
 – Test run on Intel Core i7 CPU at 3.2 GHz
 – Compiled with g++ and –O2 option
 – Basic algorithm: 7.2 seconds
 – Optimized algorithm: 3 seconds
 – So it still makes a difference!
Interpolating Attributes

• What if the two end points of the line have a different color?
• The color across the line must smoothly change:
For $m \in [0,1]$ it is better to interpolate in the x direction as it will produce a smoother variation.
Interpolating Attributes

- Assume that the color of the endpoints are c_0 and c_1
- The color of an intermediate point should be:

$$c = (1 - \alpha)c_0 + \alpha c_1$$

where α is the interpolation variable

- At any pixel (x, y), we can compute it based on the horizontal or vertical distance of the pixel to the first endpoint:

$$\alpha = \frac{x - x_0}{x_1 - x_0}$$
Interpolating Attributes

• Assume that the color of the endpoints are c_0 and c_1
• The color of an intermediate point should be:

$$c = (1 - \alpha)c_0 + \alpha c_1$$

where α is the interpolation variable

• It can also be computed incrementally

$$\alpha(x_0 + 1) = \alpha_1 = \frac{1}{x_1 - x_0}$$

$$\alpha(x_0 + 2) = \alpha_2 = \alpha_1 + \frac{1}{x_1 - x_0}$$
Algorithm with Interpolation

- Algorithm with color interpolation:

\[
\begin{align*}
 y &= y_0 \\
 d &= (y_0 - y_1) + 0.5(x_1 - x_0) \\
 c &= c_0 \\
 dc &= (c_1 - c_0) / (x_1 - x_0) // \text{skip } \alpha; \text{ directly compute color increment} \\
 \text{for } x = x_0 \text{ to } x_1 \text{ do:} \\
 &\quad \text{draw}(x, y, \text{round}(c)) \\
 &\quad \text{if } d < 0 \text{ then:} // \text{choose NE} \\
 &\quad &\quad y = y + 1 \\
 &\quad &\quad d += (y_0 - y_1) + (x_1 - x_0) \\
 &\quad \text{else:} // \text{choose E} \\
 &\quad &\quad d += (y_0 - y_1) \\
 &\quad c += dc
\end{align*}
\]
Triangle Rasterization

- Initially all we have is the screen coordinates of three vertices

(x_0, y_0)
(x_1, y_1)
(x_2, y_2)
Triangle Rasterization

- From them we compute line equations for the edges:

\[f_{01}(x, y) = x(y_0 - y_1) + y(x_1 - x_0) + x_0y_1 - y_0x_1 \]
\[f_{12}(x, y) = x(y_1 - y_2) + y(x_2 - x_1) + x_1y_2 - y_1x_2 \]
\[f_{20}(x, y) = x(y_2 - y_0) + y(x_0 - x_2) + x_2y_0 - y_2x_0 \]
We then walk across the viewport to determine inside pixels:
Triangle Rasterization

• For efficiency we may only walk within the bounding box of the triangle:

- For each pixel we visit, we must make an inside test with respect to all three edges
- We can simply plug-in the \((x, y)\) value of the visited pixel to each line equation
- If all are negative, the pixel is inside the triangle
Triangle Rasterization

- However, using barycentric coordinates will help us with interpolation of attributes

What are the barycentric coordinates of \((x, y)\)?

\[
\alpha = \frac{A_0}{A}, \quad \beta = \frac{A_1}{A}, \quad \gamma = \frac{A_2}{A}
\]
Triangle Rasterization

- We don't actually need to compute the areas as the bases are shared and will cancel out

$$\alpha = \frac{A_0}{A}, \beta = \frac{A_1}{A}, \gamma = \frac{A_2}{A}$$

$$\alpha = \frac{f_{12}(x, y)}{f_{12}(x_0, y_0)} \quad \gamma = \frac{f_{01}(x, y)}{f_{01}(x_2, y_2)}$$

$$\beta = \frac{f_{20}(x, y)}{f_{20}(x_1, y_1)}$$

What are the barycentric coordinates of \((x, y)\)?
Overall Algorithm

\[
\begin{align*}
&\text{for } y = y_{\text{min}} \text{ to } y_{\text{max}} \text{ do:} \\
&\quad \text{for } x = x_{\text{min}} \text{ to } x_{\text{max}} \text{ do:} \\
&\quad\quad \alpha = f_{12}(x, y)/f_{12}(x_0, y_0) \\
&\quad\quad \beta = f_{20}(x, y)/f_{20}(x_1, y_1) \\
&\quad\quad \gamma = f_{01}(x, y)/f_{01}(x_2, y_2) \\
&\quad\quad \text{if } \alpha \geq 0 \text{ and } \beta \geq 0 \text{ and } \gamma \geq 0 \text{ then:} \\
&\quad\quad\quad c = \alpha c_0 + \beta c_1 + \gamma c_2 \\
&\quad\quad\quad \text{draw}(x, y, \text{round}(c))
\end{align*}
\]

- Note that the computation of the barycentric coordinates can also be made incremental for greater efficiency
Summary

• The result of rasterization is a set of fragments (pixel-to-be) for each primitive

• Each fragment has interpolated values of attributes:
 – Color values
 – Texture coordinates
 – Depth value
 – Normals
 – Or any user-defined attribute for vertices
CENG – 477
Introduction to Computer Graphics
Fragment Processing
Fragment Processing

• The previous stages of the pipeline (up to rasterization) is generally known as the vertex pipeline
• **Rasterization** creates a set of **fragments** that make up the interior region of the primitive
• The rest of the pipeline which operates on these fragments is called **fragment pipeline**
• Fragment pipeline is comprised of several operations
• The end result of fragment processing is the update of corresponding locations in the **framebuffer**
Fragment Processing

- Vertices
 - Vertex Pipeline
 - Rasterization
 - Fragment Pipeline
 - Framebuffer
 - Color Buffer
 - Depth Buffer
 - Stencil Buffer
Fragment Processing

- Fragment pipeline is comprised of many stages:
 - Following is OpenGL’s handling of the fragment pipeline
 - Different renderers may implement a different set of stages
Depth Buffer Test

- Among these, the **depth buffer test** is very important to render primitives in correct order.
- Without depth buffer, the programmer must ensure to render primitives in a back to front order.
 - Known as painter’s algorithm:

From wikipedia.com
Depth Buffer Test

- Binary space partitioning trees may be used for this purpose.
- However, they are costly to generate and may require splitting primitives due to impossible ordering cases.

From wikipedia.com
Depth Buffer Test

- When memory was a very valuable resource, such algorithms were implemented
- Quake3 was one of the main games that used painter’s algorithm using BSP trees
- Each game level was stored as a huge BSP tree
 - Read more at: https://www.bluesnews.com/abrash/chap64.shtml
Depth Buffer Test

• **Main Idea:**
 – At each pixel, keep track of the distance to the closest fragment that has been drawn in a separate buffer
 – Discard fragments that are further away than that distance
 – Otherwise, **draw** the fragment and **update** the z-buffer value with the z value of that fragment

• Requires an extra memory region, called the **depth buffer**, to implement this solution

• At the beginning of every frame, the depth buffer is reset to **infinity** (1.0f in practice if the depth range is [0.0f,1.0f])

• Depth buffer is also known as **z-buffer**
Example

<table>
<thead>
<tr>
<th>Initial state of depth buffer</th>
<th>z-values of the first triangle</th>
<th>Resulting depth buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>z-values of the second triangle</th>
<th>Resulting depth buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>