CEng 713, Evolutionary Computation, Lecture Notes

GENETIC PROGRAMMING
Introduction

• Earlier ideas in 70's, 80's
• Developed in 90's, J. Koza

• Can evolutionary approaches can be used to write partial or complete computer programs?
Application Areas

- Classifier systems,
- Symbolic regression,
- Grammar induction,
- Engineering design, i.e. electronics, mechanics.
- In general, most machine learning tasks involving supervised or reinforcement learning.
GP in summary

• Search space: partial computer programs, expressions, complex data structures.

• Representation: Usually trees. Linear and graph representations may also be defined. Usually genotype is very similar to phenotype.

• Genetic operators: Special operators involving manipulation of data structures.
Tree Representation

• Function set for intermediate nodes.
• Terminal set for leaf nodes.
• More suitable to functional P.L.'s, evolving expressions, decision trees, classifier systems...

• Examples:
 - Arithmetic formula
 \[x + \frac{2}{y+3} x^2 \]
 - Logical formula
 \[(p \land q) \Rightarrow (q \Leftrightarrow p) \]
 - Program
    ```
    i=0
    while (i < 100) {
      i = i + i;
    }
    ```
\(x + \frac{2}{y+3} x^2 \)
\[(p \land q) \Rightarrow (q \Leftrightarrow p)\]
i=0
while (i<100) {
 i=i+i;
}
• $t \in T$ (terminals), $f \in F$ (functions)

 t is a correct expression

 $f(e_1, e_2, \ldots, e_n)$ is a correct expression iff $f \in F$, $arity(f) = n$, and

 $\forall i, e_i$ is a correct expression

• Usually GP expressions are not typed. Any function get any other expression as parameters.

• *Strongly typed GP* is proposed to deal with such problems.
Genetic Process

• Initialization:
 - Involves creation of a tree population with internal function nodes and leaf terminal nodes randomly.
 - A depth limit is forced during random operation.
 - Generation of full trees vs growing trees. (regular shape vs irregular shape)
 - The ramped half-and-half method: use different tree depth classes, and for each class create half of the population full and half as grown.
• Mutation:
 - Pick a random node and its subtree and replace it with a random subtree.
• Crossover:
 - Pick a random subtree from each parent. Divide each into subtree and the root subtree partitions. Swap and combine each root subtree with the others subtree.
parents:
\[x + \frac{2}{y+3} \cdot x^2 \]
\[(x-(x\cdot3)) \cdot (y\cdot y) \]

offsprings:
\[x + (y\cdot y) \cdot x^2 \]
\[(x-(x\cdot3)) \cdot \frac{2}{y+3} \]
Linear Representation

- Define an alphabet of machine codes for possible operations in the language. (AIMGP)
- An index memory or set of registers.
- Represent each program as a sequence of machine codes.
- Machine codes are executed with memory access to evaluate a genome.
- Use special mutations (operand/operator mutations) and standard crossover operation like any GA with integer representation.
Graph Representations (PADO)

- PADO (Parallel Algorithm Discovery Orchestration)
- A graph of nodes connected to each other with edges denoting program flow.
- Each node executes an instruction and based on some decision expression follows one of the outgoing edges.
- Indexed memory access.
- Special mutation and crossover operations are required.
• Stack based basic set of commands. Action set and branching decision to another node.

• Mini program and a library of Automatically Defined Functions

• Crossover: partition each parent into two classes. Mark internal, outgoing and incoming edges of each class. Crossover classes with preserving internal edges and combining incoming/outgoing edges.
Problems of GP

- Crossover and mutation can be too destructive.
- Uncontrolled tree growth 'Survival of the Fattest'
- Intelligent crossover operations proposed.
- Evaluating fitness: too slow, executing programs or simulations, halting problem.
Improving Crossover

• %75 of the offsprings fitnesses are less than half of the fitness of their parents!

• Biology:
 - Speciation, only species of same kind reproduce
 - Semantics preserving. A phenotype is crossovered with same phenotype.
 - Homologous, structure preserving. Gene positions are crossed-over at codons and gene boundaries are marked.

• Simple GP:
 - Any subtree is cross-overed with any other.
 - New subtree can be put in any context. No similarity.
 - No speciation. A random individual can be anything.
Brood Recombination

• Attehberg, 1994.
• Make N crossovers instead of 1. Take best 2 of 2N offsprings according to their fitnesses.
• Calculate N times more fitnesses but a higher chance to find a good crossover.
Intelligent Crossover
Different Tree Operators

• Mutations:
 - Point mutation: single node exchanged with a random terminal/non terminal value
 - Permutation: arguments of a terminal node is shuffled
 - Hoist: A subtree is taken as a whole individual
 - Expansion mutation: A terminal node is replaced with a random subtree.
 - Collapse subtree mutation: Subtree is replaced with a terminal.
 - Subtree mutation: A subtree is replaced by another random subtree.
 - Gene duplication: Subtree substituted for random terminal.
• Crossovers:
 – Subtree exchange: exchange two random subtrees from individuals.
 – Self crossover: exchange subtrees in the individual itself.
 – Module crossover: exchange modules between individuals.
 – Context-preserving crossovers: exchange subtrees if structure matches with some degree.
Improving the Evolvability

- Modularization: Logically closed entities working as a black box having interface with other modules.
- The solution consists of one or more modules and the main body.
- Modules -> building blocks.
- Shorter programs -> less destruction probability.
- Types:
 - Automatically Defined Functions (Koza, 1994)
 - Encapsulation (Koza, 1992)
 - Module Acquisition (Angeline & Pollack, 1992)
Automaticall Defined Functions

• Each individual consists of:
 – Result producing branch
 – Function defining branch

• Usually structure is fixed (number of functions/arities etc)

• Separate genetic operators applied for function(s) and body in an isolated manner.

• Architecture altering methods can be applied but probably not useful.
Encapsulation

- Select a non-terminal node, define and bind it as a new terminal globally.

- If subtree contains useful operations it is beneficial.
Module Acquisition

- A subtree is selected and part of the tree up to a depth level is defined as module. The part outside of this subtree is considered as arguments.
- Also referred to as compression.
Strongly Type Genetic Programming

- Programming Language analogy: a strict type system in representation helps in reproduction of valid individuals.
- Each subtree has a annotated type. Crossover and mutation preserve types.