
CEng 242 Homework 2
Due 30th March 2003

In this homework you will simulate static binding applied in ML like program phrases.
You are given the following datatype definitions:

type ValDec = {ID:string, EXP: string, BODY:string list};

type Environment = {ID:string, EXP: string} list;

datatype Declaration= Simple of (bool*ValDec)

| Collateral of (bool*ValDec list)

| Local of (Declaration list)*Declaration;

A ValDec typed value defines a binding occurrence for an identifier. ID field stores
the identifier name. EXP stores a description of the identifier. It works like a comment
which will be used to distinguish identifiers with same name. BODY contains a list of
strings which stands for a list of applied occurrences. Assume that this is like any ML
expression with all constants, keywords, operators, punctuation are removed and only
used identifier names are left.
For example ML declaration:

val x = if a<b then (f a)+(g b) else (g (f a))+b+x;

can be represented by:
{ID="x",EXP="Some integer x",BODY=["a","b","f","g","x"]}

An Environment typed value defines a list of bindings. Each binding is an (ID, EXP)
pair corresponding the same fields in the ValDec.

A Declaration typed value is like a declaration phrase in ML . It can be a simple val

declaration, a collateral declaration or a local declaration block.

Simple bool*ValDec stands for a val declaration in ML . First boolean value is the
recursive flag. If it is true then val definition is recursive (like val rec f=...), else it
is not recursive.

Simple(true,{ID="f",EXP="f the factorial",BODY=["f","x"]})

represents the ML phrase:
val rec f=fn x => x*f (x-1)

Collateral bool*(ValDec list) stands for a list of simple declaration combined by
the collateral composition (and in ML). First boolean value is again the recursive flag
modifying all components.

Collateral(true,[{ID="f",EXP="some f",BODY=["g","x"]},

{ID="g",EXP="some g",BODY=["f","x"]}])

represents the ML phrase:
val rec f= (g x) ...

and g=(f x) ...

Local (Declaration list)*Declaration represents a local declaration block where
the second Declaration value is the body of the declaration and it is evaluated with
the local Declaration list environment. After environment will not include this dec-
laration list but the declaration in the second element of the tuple. It corresponds to
the local ... in ... end declaration in ML .

Local ([LD1,LD2,LD3],D)

represents the ML phrase:
local LD1;LD2;LD3

in D

end

Write the following ML functions:

1. environment: Declaration list -> Environment

environment declarations will get a list of declarations and return the current
environment after these declarations. There should be no duplicate identifiers in
the resulting list.

2. bindings: Declaration list -> {ID:string,EXP:string} list

bindings declarations will get a list of declarations, for all applied occurrences
in the BODY fields of the declarations find the EXP field in the corresponding binding
occurrences and return a list of these bindings in a list {ID:string, EXP:string}
typed values.

Assume initial environment is empty. Give bindings in order of appearance in the
declaration list. If the applied occurrence is free (there is no binding occurrence
for it) give EXP as ”FREE”.

2

Example:

val d = Local ([Simple (false,{ID="x", EXP="first x", BODY=[]}),

Collateral(true,[{ID="f", EXP="mutual f", BODY=["x","f","g"]},

{ID="g", EXP="mutual g", BODY=["x","f"]}]),

Simple (true,{ID="x", EXP="second x", BODY=["x"]})

] ,

Collateral(false,[{ID="a", EXP="the a", BODY=["x","g"]},

{ID="b", EXP="the b", BODY=["a","f"]}])

);

environment [d];

[{ID="a", EXP="the a"}, {ID="b", EXP="the b"}]

bindings [d];

[{ID="x", EXP="first x"},{ID="f", EXP="mutual f"},{ID="g", EXP="mutual g"},

{ID="x", EXP="first x"},{ID="f", EXP="mutual f"},

{ID="x", EXP="second x"},

{ID="x", EXP="second x"},{ID="g", EXP="mutual g"},

{ID="a", EXP="FREE"},{ID="f", EXP="mutual f"}]

3

