
CEng242 Homework 3
Due 13th April 2003

Most of the imperative languages provide array types which forms a mapping between two
types. However in this mapping, index (or source) type is restricted to a subrange of discrete
ordered primitive types.
In this homework, you will implement an abstract data type in ML which implements a set
of mappings on two arbitrary data types. This datatype: ‘(α, β) MapSet’ will implement:
(α, β) MapSet= P(α 7→ β)
Which is a set of mappings.
That means each value of the MapSet stores the mappings (corressponding β typed values)
for a subset of α. This datatype should provide all following interfaces:

toMapSet maplist cmpfunc : α*β list -> (α->α->int) -> (α,β) MapSet
This function is the constructor for MapSet. It first gets a list of tuples containing
key-value pairs in the map. Second parameter is a function comparing two α values.
This function will be used to guarantee that there is at most 1 mapping for an α
typed key. Also it is used for ordered operations on mapping keys. It returns a
negative value if first α is less than the second, a positive value if it is larger than
the second and it returns 0 if two values are equal (like strcmp() in C).

get mapset key : (α,β) MapSet -> α -> β
This function is the selector for this datatype. For a given value of α typed key value
it returns the value of this mapping if available. If the value is not available, that
is there is no mapping for key in mapset it raises an exception named NotFound.

set mapset key value : (α,β) MapSet -> α -> β -> (α,β) MapSet
This function returns a new Mapset with key mapping is set/updated to the value

and the other elements remain same with the mapset.

delete mapset key : (α,β) MapSet -> α -> (α,β) MapSet
This function returns a new MapSet with key is deleted and remaining elements are
same with mapset . If key does not exist in mapset , it silently returns the same
MapSet.

mapsetA ++ mapsetB : ((α,β) MapSet * (α,β) MapSet) -> (α,β) MapSet
This infix operator function returns the union of two MapSet values. Resulting set
should not contain duplicate keys. In case of same key existing in both mapsets,
the value in the resulting mapset is taken from the second mapset (mapsetB).

mapsetA ** mapsetB : ((α,β) MapSet * (α,β) MapSet) -> (α,β) MapSet
This infix operator function returns the intersection of two Mapset values. Resulting
set contains the keys existing in both mapsets. The map values are taken from the
second mapset (mapsetB).

mapsetA -- mapsetB : ((α,β) MapSet * (α,β) MapSet) -> (α,β) MapSet
This infix operator function returns the difference of two Mapset values. Resulting
set contains the keys that exist in the first mapset but not in the second mapset.
The map values are preserved as they are in the first mapset (mapsetA).

keys mapset : (α,β) MapSet -> α list
This function returns a sorted list of all keys in the mapset. This list consists of
key values and should be in ascending order according to the comparison function
given in the constructor.

pairs mapset : (α,β) MapSet -> (α*β) list
This function returns a sorted list of all key-value pairs in the mapset. This list
should be in ascending order accoring on key values as in the keys function. con-
structor.

mapAll mapset func : (α,β) MapSet -> (α->β->γ) -> γ list
This function applies func to all key-value pairs in the mapset and returns the list
of return values. Resulting list should contain results of key values in ascending
order.

exception NotFound
This is just an exception for get function. Declare it as it is and in get, just use
‘raise NotFound’. expression.

Put definition of all these function in an abstype declaration. Follow this instructions:

1. You can choose any internal data representation for MapSet. This representation should
be hidden by the abstype.

2. Only export the requested definitions in the topmost scope. Hide all auxilary definitions
in a local block.

3. Infix operators should have the same precedence. You can put definitions like:
infix **; in order to use infix syntax.

4. Assume that type specification is not ambiguous. That is you will not be given:
toMapSet [] (fn x=> fn y=> x-y)
Where the type for β is underspecified. Instead it will be:
toMapSet ([]:(int*string) list) (fn x=> fn y=> x-y)

5. In the constructor toMapSet if multiple keys exists in the input list, the later value
overwrites the former one.

6. Assume both comparison functions are identical in the infix operator. When they are
called with different comparison functions result is inpredictable. That is you can use
and return comparison function of either mapsetA or mapsetB.

Sample run (Some of the ML outputs are indicated in italic):

fun strcmp a b = if (String.< (a,b)) then ~1
else if (String.> (a,b)) then 1

else 0;
val strcmp = fn : string -> string -> int

val a = toMapSet ([]:(string*int) list) strcmp;
val a = - : (string,int) MapSet

val a = set a "bugs bunny" 7;
val a = set a "road runner" 2;
val a = set a "coyote" 3;
val a = set a "tweety" 1;
val a = set a "sylvester" 4;
val a = set a "bugs bunny" 1;
val a = - : (string,int) MapSet

val b = toMapSet [("bugs bunny",4),("duffy duck",10),("coyote",2)] strcmp;
val b = - : (string,int) MapSet

get a "bugs bunny";
val it = 1 : int

get a "mickey mouse";
uncaught exception NotFound

raised at:

val a = delete a "road runner";

2

val a = - : (string,int) MapSet

val c = a ++ b;
val c = - : (string,int) MapSet

val d = a ** b;
val d = - : (string,int) MapSet

val e = a -- b;
val e = - : (string,int) MapSet

keys a;
val it =["bugs bunny", "coyote", "sylvester", "tweety"] : string list

pairs b;
val it =[("bugs bunny",4),("coyote",2),("duffy duck",10)] : (string*int) list

keys c;
val it =["bugs bunny", "coyote", "duffy duck", "sylvester", "tweety"] : string list

keys d;
val it =["bugs bunny", "coyote"] : string list

keys e;
val it =["sylvester", "tweety"] : string list

fun attach s n = s ^ ":" ^ (Int.toString n);
val attach = fn : string -> int -> string

mapAll a attach;
val it =["bugsbunny:1", "coyote:3", "sylvester:4", "tweety:1"] : string list

Your submission will be again in a single file. Starting from this homework, late submission
will be graded as:

before deadline: over 100
1 day late: over 80
2 days late: over 60
3 days late: over 30
Later: 0

3

