
CEng 242 Homework 4
Due 6th May 2003

Some computer applications require arithmetic operations on integers without precision
limits. In this homework you will implement an class for infinite precision signed integers.
Number of digits in an infinite precision integer (We will name it InfInt) is not limited.
Theoretically you can have integers with millions of decimal digits. Since they cannot fit
into any primitive or static data type they should be stored and processed in dynamic
data structures. Also operations like addition and multiplication cannot be carried out
by the primitive operators of the processor, so a library of operators should be presented.

For all operators you can use primary school methods and algorithms. Feel free to
use any algorithm as long as you understand it and you can show the internals of the
algorithm when you are asked to. Your implementation should be an original work
coded by you. Also another requirement is the efficiency. Adding n to 0 m times is not
an efficient algorithm for multiplying m and n. Such a multiplication will last centuries
for numbers with thousand digits. On the other hand it will last some seconds if you
implement the primary school algorithm. Note that you are not limited to base 10 since
our computers are is capable of making operations on larger integers. So you can use
any base with those algorithms.
Assume the following enumerated type is defined for errors:

enum Error DivisonbyZero, InvalidNumber ;

You will define and implement a class InfInt in C++ with the following member func-
tions:

InfInt(int)
Constructs and InfInt value from an integer.

InfInt(const char *)
Given a string containing a signed decimal notation, constructs the
corresponding InfInt object. String can contain heading and trailing
spaces and negative marker ‘-’ like " -1234567 ". If the string con-
tains non-digit symbols, inner spaces constructor will throw InvalidNumber.

const char * toString()
Returns the signed decimal notation of the object as a string. The
storage for the char * is allocated dynamically by the IntInf object
and deallocated in the destructor.

InfInt operator+(InfInt &)
A binary operator for addition of two InfInt objects.

InfInt operator*(InfInt &)
A binary operator for multiplication of two InfInt objects.

InfInt operator/(InfInt &)
A binary operator for integer division of two InfInt objects. If second
operator is a zero DivisionbyZero is thrown.

InfInt operator%(InfInt &)
A binary operator for remainder of two InfInt objects by integer divi-
sion. If second operator is a zero DivisionbyZero is thrown.

int operator{< > == <= >= !=}
6 comparison operators for comparing 2 InfInt objects with same mean-
ings in int typed values.

ostream & operator<<(ostream &, InfInt &)
Not a member function but an auxiliary function to stream output of
an InfInt value on the given output stream.

Assignment operator and copy constructor
Assignment operator and copy constructor will be implemented such
that no garbage or dangling reference will be produced

ĨnfInt() Similarly...

Your implementation should only make the requested functions public. Any other mem-
ber functions that you will use will be private.
You should define a header file hw4.h containing only class definition with member
variables and prototypes, and the prototype for the operator<<(..) function. No
implementation should exist in this header file. Than, in the hw4.cpp file include this
header file and put your implementations of member functions and the operator<<(..).
Your code should work in the following setting:

hw4.h

enum Error {DivisionbyZero, InvalidNumber};

class InfInt {
.... // your member variables
.... // your private member function prototypes

public:
InfInt(int);
InfInt(const char *);
const char *toString();
.... // Other public prototypes

};

ostream & operator<< (ostream &, InfInt);

hw4.cpp

// Your other includes
#include"hw4.h"

InfInt::InfInt(int a)
{
...
}
// Other private and public class definitions.
// No main() yet.

2

hw4main.cpp

// Your other includes
#include"hw4.h"

int main() {
//Your trial code here
IntInf a("1234567234234234234234234234234234234");
IntInf b("12345672342342342342342342342342");
IntInf c(0),d(0);

a=a+b;
c=a*b;

cout << a << ’+’ << b << ’\n’;
.....

}

Then you can compile this code by:
g++ -c hw4.cpp
g++ -o hw4main hw4main.cpp hw4.o

In the submission, you should submit a .tar.gz file only containing hw4.h and hw4.cpp.

3

