
CEng 242 Homework 5
Due 21st May 2003

In this homework you will implement at simple back-end for a drawing package. In this
package there are 3 basic shapes Rectangle, Circle and Triangle. Also it is possible
to group shapes in ShapeGroup objects.
Drawing tool works in a Window providing the events and user interaction. Each shape
has an offset (position) within the window by x and y values. In addition it has a
depth value determining the ordering of the intersecting shapes. So that when a win-
dow is drawn shapes will be drawn from the largest depth to smallest one. In addi-
tion each shape contains a color attribute. In the following picture there is a Window
with a Circle, a Rectangle, a Triangle, and a ShapeGroup, where ShapeGroup has a
Rectangle, a Triangle and 2 Circles. Depth of the triangle is the smallest and the
circle is the largest so that they are ordered in this way.

ShapeGroup

Window

In the homework, you will use the following class hierarchy:

Shape

Circle
wwoooooooooo

Rectangle
�������������������

Triangle
��

ShapeGroup
��????????????????? Window

��

Class Shape contains the following members:

struct Point { int x, int y;};
enum Color {WHITE,RED,BLUE,GREEN,MAGENTA,CYAN,YELLOW,PINK,BROWN,ORANGE};
struct Event {

enum evtype {INSIDE,DRAW,RAISE,LOWER,SCALE,MOVE,SWITCH} ev;
Point evpoint;
union { // Anonymous union, all members are available to Event

Point point;
double scale;

};
};



class Shape {
protected:

int x,y;
private:

int depth;
Color color;

public:
Shape(int,int,int,Color);
virtual int inside(Point) = 0;
virtual void draw() = 0;
virtual void scale(double) = 0;
void move(Point);
Color getcolor();
int getdepth();
virtual int handle(Event);

};

In subclasses all virtual functions will be implemented. inside() returns true if the
given point is inside the boundaries of the shape. draw() prints a message on standard
output about the primitives to be used.
The other member functions are described as follows:

Shape(int x, int y,int d,Color c)
Constructs the shape in the offset (x,y ), depth d and color c .

move(Point p)
Sets the offset of the object to the new point p .

getcolor()
Returns the color of the shape.

getdepth()
Returns the depth of the shape.

handle(Event ev )
Handles the given event by accessing the appropriate members. Handler meanings
are described below .

The other shapes implement the inside() function according to their types (i.e. a circle
implements it by checking the distance of the point is less than the radius). They have
the following members:

Circle: int radius;
constructor will be Circle(x,y,r,depth,color)

Rectangle: int height,width; constructor will be Rectangle(x,y,width,height,depth,color)

Triangle: Point p2,p3;
p2 and p3 are 2 coordinates relative to the shape offset (x,y), repre-
senting the second and third corners of the rectangle.
constructor will be Triangle(x,y,p2.x,p2.y,p3.x,p3.y,depth,color)

2



scale(double s) operation changes all relative coordinates of the shape: r for Circle,
width and height for Rectangle, two point coordinates for Triangle are multiplied
and rounded by the scale factor s .
Window class is like a container of several shapes and it has a definition like the following:

class Window {
protected:

int width,height;
private:

Shape *shapes[100];
int nshapes;

public:
Window(int,int);
~Window();
void addShape(Shape &);
void redraw();
int handle(Event);

};

Window is constructed with an empty list of Shapes kept in shapes and nshapes mem-
bers. addShape(Shape & s ) adds a new shape s in the window. redraw() draws all
of the shapes in the windows. In order to display the depths correctly, it should draw
the objects sorted in descending order of depth. handle(Event ev will send the event
to the shape containing the event coordinates. In order to do so inside() member
function will be used. Again, since a point can be inside of multiple shapes the topmost
(smallest depth) shape will be tried first. The first shape returning a true inside report
will be capture the event (Its handle() method will be called.
ShapeGroup class is a container of other shapes but it is a shape itself. So it inherits
from both Window and Shape. A ShapeGroup has an additional boolean member called
eventpass (0 as default). When eventpass is true, it passes all events that it is taking
to its subshapes, transparently. When eventpass is false, it captures and handles the
event itself. There is no theoretical limit on the nesting of ShapeGroups. Inside test
for a ShapeGroup is same with the rectangle defining the Window of it. Constructor of
ShapeGroup will be ShapeGroup(x,y,width,height,depth).
Events
For all events, if event is handled by the Window, the Window determines the shape con-
taining the event point stored at the Event::evpoint by making the inside() tests
(from smallest to largest depth value) and sends the event to handler of the correspond-
ing shape. If no shape returns true for inside test, reports that the event is not handled
by returning 0. Otherwise, if a window matches, returns 1. Similarly if the event point
is outside of the window area (event point dimensions are greater than width and/or
height).
Shapes also return 1 for a succesful handle case and 0 for not successful.

DRAW
Shape subclasses simply call their self draw().

RAISE
Shape subclasses simply decrement the depth.

3



LOWER
Shape subclasses simply increment the depth.

SCALE
Shape subclasses call their self scale() with the Event::scale value in the event
structure.

MOVE
Window takes the relative move position from the Event::point value in the event
structure.

Shape subclasses set their offset with the new offset value given in the Event::point
value in the event structure similarly.

SWITCH
Only handled by a ShapeGroup type shape. It changes the eventpass flag. Other
shapes return 0 for this event.

A ShapeGroup class object handles events according to eventpass member. If it
is true (non-zero), it passes all events as if it were a Window, it only modifies the
Event::evpoint value in the event, converts it to offset relative (all shapes included in
the group has relative offset and depths) values. In case of a SWITCH event, if eventpass
is false, makes it true. If it is true, it first tries to send this event to its window. If
the matched shape does not handle it or no shape matches the point, it makes the
eventpass false.
When eventpass is false, it handles events to modify its Shape properties. In case of
SCALE, it only changes the height and width, does not reflect the scale operation on
the contained shapes.
draw() functions
Draw functions for different shapes produces different outputs:

Circle
drawCircle(x,y,r,Color)
for example ‘drawCircle(10,10,7,BLUE)’

Rectangle
drawRectangle(x,y,x+width,y+height,Color)
for example ‘drawRectangle(10,5,30,20,RED)’

Triangle
drawPolyLine(x,y,p2.x,p2.y,p3.x,p3.y,x,y,Color)
for example ‘drawPolyLine(5,5,10,15,15,10,5,5,GREEN)

ShapeGroup
ShapeGroup first outputs translateoffset(x,y). Then it calls the redraw() of its
Window superclass to draw contained shapes. Then it outputs translateoffset(-x,-y)
for example:
translateoffset(100,50)
drawCircle(5,8,4)
drawRectangle(20,40,30,50)
translateoffset(-100,-50)

4



You should try to use minimum number of additional member functions, minimum
member access permissions and your object oriented design should be as elegant as
possible. No public member should be added to classes in the given hierarchy. Your
programs will also be evaluated by your class definitions.
Similar to the previous homework, put only class prototype (no inline definition) and
required type definitions in hw5.h, include this file in hw5.cpp and in your for yourself
only main program code hw5main.cpp. Your codes should be compiled as:
g++ -c hw5.cpp
g++ -o hw5main hw5main.cpp hw5.o
Sample main code will be given in the following days.

5


