
CEng 242 Homework 6
Due 3rd June 2003

Prolog is commonly used in area of language processing. Its symbolic processing ca-
pabilities and backtracking feature provide fast means of parser implementations. It is
very easy to write a recursive descent parser in Prolog. With help of backtracking, you
do not have to convert your grammar into some deterministic form. Any context free
grammar without left recursion can be implemented as a Prolog program.
Each non-terminal symbol like S in the grammar is translated into a clause of the form:
s(Input,Output)

Which can be read as “Input list becomes Output after parsing-reducing the symbol
s”. When Output is empty list, the parser accepts Input as s successfully.
The rewrite rule S → T,U, V similarly converted into:
s(Input,Output) :- t(Input,Chain1), u(Chain1,Chain2), v(Chain2,Output).

So parsing S turns into parsing T with same input, taking the output of T parse as
input to U , take its output as input to V and take the output of V as the output of S.
As a result S will parse concatenation of the symbols at right hand side. So the Input

and Output are chained with intermediate Prolog variables.
Terminal symbols on the other hand matches and reduces the input list directly. So
Zero→ 0 can be written as:
zero([0|Remaining],Remaining).
For the following example grammar:

Exp → Digit | Digit, ′+′, Exp
Digit → 0 | 1

Corresponding Prolog program can be:

exp(Input,Output) :- digit(Input,Output).
exp(Input,Output) :- digit(Input,A), plus(A,B), exp(B,Output).
plus([+|R],R).
digit([0|R],R).
digit([1|R],R).

accept(Inp) :- exp(Inp,[]).

Goal clause ‘accept([0,+,1,+,0])’ will reply yes where ‘accept([0,+,1,2])’ will
reply no.
In this homework you will write such a parser for a simplified ML like expression syntax.
You are given the following grammar where left recursion is removed for convenience:

Exp → LetExp | V alue | IfExp
Exp → LetExp, ′+′, Exp | IfExp, ′+′, Exp | V alue, ′+′, Exp

LetExp → let, DecList, in, Exp, end

IfExp → if, Exp, then, Exp, else, Exp, ′;′

DecList → V ar, ′ =′, Exp | V ar, ′ =′, Exp, ′;′, DecList

V alue → V ariable | Number
V ariable → Any string with digits, letters, ‘ ’ , starting with small letters
Number → any Prolog number

Terminal symbols for this grammar are:
let, if, then, else, in, end, ’+’ , ’=’, ’;’ ∪ all numbers ∪ all prolog atoms
without punctuation.
Your parser will get a list of terminals, parse an Exp, and return a parse structure in
the form:
let([X = Exp1, Y = Exp2,...],Exp)
if([CondExp],Exp1 ,Exp2)
Exp1 + Exp2

Number

Variable

This structures nest as the parser descends through deeper expression levels. In order
to provide this parse structure, you will add another argument in the clauses which will
collect partial parts from the RHS of a rewrite rule and combine in the LHS like:
exp(+(D1,D2),Input,Output) :- Digit(D1,Input,A),plus(A,B),Digit(D2,B,Output).

Sample run:

?- parseexp(X,[abc,+,1]).
X = abc+1 ;
no

?- parseexp(X,[if,0,then,1,else,4,+,2,;]).
X = if(0,1,4+2) ;
no

?- parseexp(X,[if,0,then,1,else,4,+,2]).
no

?- parseexp(X,[let,y,=,if,0,then,1,else,4,;,+,2,;,x,=,1,in,w,+,w,end]).
X = let([y=if(0,1,4)+2,x=1],w+w);
no

?- parseexp(X,[let,x,=,let,y,=,let,z,=,2,in,
5,+,4,+,z,

end,in,
x,+,y,

end,in,
x,end]).

X = let([x=let([y=let([z=2],5+(4+z))],x+y)],x) ;

2

no

You can use following clauses to identify numbers an identifiers (V ariable):

number(X) Built-in, succeeds if X is instantiated to a number

identifier(X) :- name(X,Str), firstsmallletter(Str).

firstsmallletter([X|R]) :- X>=97 , X=<122 ,restothers(R).
restothers([]).
restothers([X|R]) :- X>=48,X=<57,restothers(R).
restothers([X|R]) :- X>=65,X=<90,restothers(R).
restothers([X|R]) :- X>=97,X=<122,restothers(R).
restothers([95|R]) :- restothers(R).

3

