
CEng 242 Homework 3
Due: 18th April 2004

In this homework, you will implement an abstract data type for representing a Document
with hierarchical markup representation. Although people mostly consider a document as
a simple linear sequence of characters called text file, most of the documents with have a
hierarchical structure. In XML (Extensible Markup Language) format, a document consists
of nested sequence of markups and text. Such a sequence can be represented as a tree like:
document title// My Report//

chapter
''OOOOOOO

section// p// introduction//

p''
OOOOOOOOO

my other paragraph//

chapter
��4

44
44

44
44

44
44

44
44

4

section// p// next topic//

section
''OOOOOOO

and the next one//

p''
OOOOOOOOO

last one//

The tree above can be written in an XML like file as:

<document>

<title>

My Report

</title>

<chapter>

<section>

<p>

introduction

</p>

<p>

my other paragraph

</p>

</section>

</chapter>

<chapter>

<section>

<p>

next topic

</p>

</section>

<section>

and the next one

<p>

last one

</p>

</section>

</chapter>

</document>

1



Note that all markups are in triangle brackets, and all markups should be terminated by
the same tag preceded by the ‘/’ symbol. For example <section> is terminated by the
corresponding </section>. A markup can enclose 0 or more of strings and/or other markups.
The strings are the actual text of the document and markups are the structure labels. When
you strip down only the text portion of the above document, you will get:

My Report
Introduction
my other paragraph
next topic
and the next one
last one

The actual XML representation contains other features likes attributes in the tags, Document
Type Definitions, style sheets etc. However, for simplicity we have simple tags represented
by arbitrary strings. The root element in the document is always a document markup.

In this homework, you are asked to write a data type Document for processing such documents.
In order to provide integrity of the document, one should start with an empty document and
incrementally create markups and fill in the texts. In order to address a specific point in the
tree structure, we need to have a sequence of links to follow in the document. Since these links
are labeled by tags (markup names), a sequence of tags could have been enough. Starting
from the root element one can address a node. For example ["document","title"] path
positions the markup containing the string ”My Report”. However since a markup can con-
tain multiple occurrences of another markup, this is not enough. ["document","chapter",
"section","p"] can be the ”introduction” or ”my other paragraph”, or ”next topic” or
”last one” in the example. So, such a path is defined as a list of tuples instead. First
element of the tuple is the tag and second element is the integer denoting the order of
that markup in the list among the same tags. So that [("document",1), ("chapter",2),
("section",2),("p",1)] will address the string ”last one”.

Implement and abstract data type (abstype) in ML with following interface definitions:

PathNotFound : exception PathNotFound
Exception to raise when an insert position is not found.

TxtNotFound : exception TxtNotFound
Exception to raise when a searched string is not found in the document.

emptyDocument : Document
A constructor value with the basic document only having a document markup which is
empty.

addText : Document -> (string * int) list -> int -> string -> Document
addText Document Path Position Text will get a document and a path in that doc-
ument. If such a path exists in the document, inserts the string Text under that path.
The insert position is given by the third parameter Position . If the path is not found,
PathNotFound exception is raised. If the insert position is greater than the last element,
text is inserted as the last element.

addTag : Document -> (string * int) list -> int -> string -> Document
addTag Document Path Position Tag will get a document and a path in that docu-
ment. If such a path exists in the document, inserts the markup Tag under that path.
Initially markup will contain no elements. In later calls, this markup should be accessible
as Path @(Tag ,n+1) where n is the number of preceding occurrences of the Tag in the

2



Path , and @ is the append operation in ML. The insert position is given by the third
parameter Position . If the path is not found, PathNotFound exception is raised. If the
insert position is greater than the last element, markup is inserted as the last element.

addDocument : Document -> (string * int) list -> int -> Document -> Document
addDocument Document Path Position NewDoc will get a document and a path in
that document. If such a path exists in the document, inserts another document NewDoc
under that path. Since it is of Document type, NewDoc has a root document markup.
During the insertion, this root element is stripped out and all enclosed elements are
inserted under Path . The insert position is given by the third parameter Position .
Note that in this call more than one member can be added in a position. If the path is
not found, PathNotFound exception is raised. If the insert position is greater than the
last element, document members are inserted as the last elements.

addTexttoLast : Document -> (string * int) list -> string -> Document
Similar to addText. Position parameter is not given so text is added as the last element
of the list.

addTagtoLast : Document -> (string * int) list -> string -> Document
Similar to addTag. Position parameter is not given so markup is added as the last
element of the list.

addDocumenttoLast : Document -> (string * int) list -> Document -> Document
Similar to addDocument. Position parameter is not given so document is added as the
last element of the list.

clearPath : Document -> (string * int) list -> Document
clearPath Document Path will get a document and a path and deletes that path,
including the subtree under, from the document. If the path is not found, PathNotFound
exception is raised. If one tries to clear the root element, the empty document is returned.

getPath : Document -> (string * int) list -> Document
getPath Document Path will get a document and a path and returns that markup
together with all of its members enclosed in a document. Resulting document will
contain a root document markup and that markup will only contain the markup given
as the last element of the Path with its subtree. If the path is not found, PathNotFound
exception is raised.

dumpXML : Document -> string
dumpXML Document will export the document as an XML file string as defined in the
example. Carriage return is put after each markup and text element and proper inden-
tation with 4 spaces per nesting level is put into resulting string.

dumpTxt : Document -> string
dumpTxt Document will export the document as an text file string as all markups
are stripped. Carriage return is put after each text element and proper indentation with
4 spaces per nesting level is put into resulting string.

findTxt : Document -> string -> (string * int) list
findTxt Document SearchString will search the SearchString in the text elements
of the document and return the path if it is found. Search is case sensitive and can not
span adjacent text elements in the same level. The path is returned as the tuple list
notation. If the search string is not found, TxtNotFound exception is raised. Only first
occurrence is returned if there are multiple occurrences exist in the document.

findReplace : Document -> string -> string -> Document
findReplace Document SearchString ReplaceString will search the SearchString

3



in the text elements of the document and return the document with all occurrences is
replaced by the ReplaceString . Search is case sensitive and can not span adjacent text
elements in the same level. All other elements and document structure is kept as it is.
If the search string is not found the same document is returned.

In the implementation you are free to use any internal representation and make auxiliary
definitions. However you should hide the other definitions in local declaration blocks so that
you will not define any other identifiers but the ones mentioned above in the global environ-
ment. Note that all document modifying functions do not update the existing document but
return a new document with modifications applied. You should not use any mutable variable
like references or arrays.

The required functions for text search and replacement will be posted in the newsgroup
together with the sample executions.

Follow the newsgroup for submission details. Cheaters will get 0 from all of the 6 homeworks.

4


