
CEng 242 Homework 3
Due: 17th April 2005

In this homework you will implement an abstract data type NTree for N-ary trees in
Haskell. You will implement interface functions to manipulate this data type. In addition,
you will required operator instances so that NTree will be member of Ord classes Show.
We will not give you the type signature of NTree. You will implement it anyway you want
and hide the type internals. That’s the spirit of abstract data type as you shall remember.

Your module should look like:

module Nary (NTree, interface functions ) where
data NTree alpha = internal definition of type

definitions of interface and auxiliary functions

interface functions are the interface functions the module will export. These func-
tions are explained below. internal definitions of type can be anything usefull.
You will not export any type constructor given here.
A node of NTree α stores a value of type α and can have arbitrary number of children
each of which is a NTree. No children can be null but a leaf node can have 0 children.
You will implement the following interface functions:

new value

new :: α -> NTree α
Creates a single, leaf node NTree. Node contains the value

mergechildren value childlist

mergechildren :: α -> [NTree α] -> NTree α
Gets a node value and a list of children and merges into a tree where root element
will have value and elements in the childlist will be the children from leftmost
to right in the order they are given in the list.

getSub ntree path

get :: NTree α -> [Int] -> Maybe NTree α
Given a tree ntree and a list of integer, this function traverses the tree and returns
the corresponding subtree. Each number in the list is the number of the child node
to be chosen. For example [1,3,2] chooses the leftmost child of the root, then
the third child of that, and then the second child of this third child. An empty list
simply chooses root, the whole tree.

When such a child does not exists, for example number of children in a node is 4
and the number given in path is greater than 4 or 0, function will return Nothing.
Otherwise it will return Just tree where tree is the tree specified in the path.

getNode ntree path

getNode :: NTree α -> [Int] -> Maybe α
Similar to get but returns the value in the node instead of the whole subtree.

setSub ntree path newtree

setSub :: NTree α -> [Int] -> NTree α -> NTree alpha
Traverses the tree in the same way get does and replaces the found node with the

1



newtree . If the last item in the path is greater than the number of children in
current node, newtree is added as the last child of the current node. Similarly
if the current node is a leaf node and last item in path is a positive integer, a
child is created. In all other cases (a value less than 0 in path, there are 2 or
more elements in the path where current node is a leaf node), function will silently
ignore the input and return the original tree.

setNode ntree path newvalue

setSub :: NTree α -> [Int] -> α -> NTree alpha
Similar to setSub but modifies the traversed node value content and do not change
the others nodes and structures. The node specified in path should be exact (as
it is in getSub). Otherwise no change is made and the original tree is returned.

(<) , (==), (>), (<=), (>=), (/=)
All of these operators are inherited from Ord and Eq. NTree will be implemented
as an instance of Ord class. These operators have one of the type signature:
Eq α => α -> α -> Bool
Ord α => α -> α -> Bool
In your instance declarations ‘α’ is replaced by ‘NTree α’. Note that α should
be Ord class in NTree α. So you will implement:
instance Eq alpha => Eq NTree α , and
instance Ord alpha => Ord NTree α
class instances. compare, min, max functions are also provided by standart Haskell
library.

Assume the ordering relation between two trees are defined as follows:

1. If the root node of tree A is less than root node of tree B, tree A is less than
tree B.

2. When the node values equal, tree A is a leaf node and tree B is a leaf node,
tree A is equal to tree B

3. When the node values equal, tree A is a leaf node and tree B has at least one
child, tree A is less than tree B

4. When the node values equal, and both trees have children, the leftmost chil-
dren are compared and if leftmost children of A is less than the leftmost
children of B, tree A is less than tree B

5. Otherwise, if leftmost children are equal, comparison continues with the next
leftmost children.

In other words, the most significant value is the node content, than the children
significance goes from left to right, and a null tree is always less than a non-null tree.
Two trees are equal if they have exactly same structure and same corresponding
node values.

Thanks to Prelude of Haskell, you only need to implement one of (==) or (/=)
for Eq in addition to one of (<=) or compare for Ord. All remaining operators and
functions come from Ord class definition.

show tree

show is inherited from Show class. You will implement NTree α as an instance of
this class. Type signature of show is given as:
show :: Show α => α -> String

2



You will implement the instance as:
instance Show α => Show NTree α

The output string will be in Lisp-like syntax with some indentation like:

(1,
(2)
(3,

(4,
(5)
(6)
(7)
(8)

)
(9)
(10,

(11,
(12)

)
)

)
(13)
(14)
(15)

)

Corresponding tree is:
1

2 wwoooooooooooooo

3
����

��
��

��

4 wwoooooooooooooo

5 wwooooooooooooooo

6
����

��
��

��

7
��

8
��?

??
??

??
? 9

����
��

��
��

10
��

11
��

12
��

13
��

14
��?

??
??

??

15
''OOOOOOOOOOOOOO

So your module should look like:

module Nary (NTree, new, mergechildren, getSub, getNode, setSub, setNode,
(<),(==),(/=),(>),(<=),(>=),compare,min,max,show ) where

data NTree alpha = internal definition of type

definitions of interface and auxiliary functions

Put this module and nothing else in file Nary.hs and submit as your homework. You can
have any auxiliary definitions under where in module definition as long as they are not
exported outside.
We like to remind you that our cheating policy is to give 0 to all participants for all 6
previous and following homeworks.

3


