
CENG 242
Homework # 4

(Due: April 16th, 2006 Sunday 23:59)

Hypothetical version of C described in Hw #3 is back. This time you will implement a
class named SymTable in C++.

struct Error {
 string symbol;
 int lineno;
};

class SymTable {
 public:

SymTable() ; // constructs an empty table
SymTable(const SymTable & rhs) ; // copy constructor

 ~SymTable() ; // destructs the table

 void declVar(string symbol) ; // adds symbol to current

// scope in table. The address of the symbol is the
// current line number. You should throw Error typed
// value including the name of the symbol and the
// line number of the previous definition when there
// exist a symbol with the same name in the same
// scope.

 void declFunc(string symbol) ; // adds symbol to current
// scope in table and creates a new local scope for
// the new function. You should throw Error typed
// value including the name of the symbol and the
// line number of the previous definition when there

 // exist a symbol with the same name in the same
// scope.

 void exitFunc() ; // terminates the last scope in the table
 void refIdentifier(string symbol) ; //adds a binding to the table
 SymTable link(SymTable t2, int offset) ; // merges the table

// with t2 and returns the new table. Unresolved
// symbols of one table can be bound to declarations
// of the other and the resulting table is returned
// with all binding and applied occurrences are
// combined. Offset is added to all line numbers of
// second table, so line numbers are not confused.
// You should throw Error typed value including the
// name of the symbol and the line number of the
// definition in the first (current) table when a
// symbol in the first table also exists in the
// second table in the same scope. When there are
// more than one redefinition, give the identifier

 // with the smallest line number in first table.

 SymTable & operator=(const SymTable &) ; // operator =
 int operator[](string symbol) ; // returns the line number of the
 // definition of the symbol, and if not found returns

// -1

 friend ostream & operator<<(ostream & ost, const SymTable & t) ;
 // prints the symbol table
}

Specifications:

• You should not add any public member to class.
• In error conditions mentioned above, only throw the exception. Do not write any code

to catch it in your submission.
• You should not use any STL classes except string.
• Use cow submission system.
• Put your declaration into a file named “SymTable.h” and definition to a file named

“SymTable.cpp”. tar and submit these two files. You should not have main function
or any other global function.

• Your code should be compiled on machines in mera labs with the compiler g++. If
not compiled, you will get 0.

