
CENG 242

Hw #5
Spring 2006/2007

(Due: May 14th, 2007 Monday 23:59)

In this homework, you will write a C++ code for a simple drawing tool. You will have a
base class called Shape and four derived classes Rectangle, Ellipse, Triangle and
ShapeGroup. ShapeGroup is group of Shape’s.

Shape class has these methods:

• virtual void move(int x, int y) = 0;

This method moves the shape in x and y directions without deforming the shape.

• virtual void scale(int ratio) = 0;

Assume that all the shapes have rectangular bounding boxes (the minimum sized
rectangle whose sides are assumed to be parallel to x and y axis and covering the
whole shape). Assume that size of bounding box is w x h, the new size should be
ratio*w x ratio*h after scale operation, and the center of bounding box should be
same as before.

• virtual void print() = 0;

Print the information about shape. The format will be given below.

All the derived classes should implement these virtual methods of Shape.

Rectangle has this constructor:

• Rectangle(Point p1, Point p2);

where Point is a structure:

struct Point {
 int x;
 int y;
};

These points will represent the lower left and upper right corners of the rectangle.
Sides of rectangles are assumed to parallel to x and y axis.

Triangle’s constructor is:

• Triangle(Point p1, Point p2, Point p3);

Ellipse class has the constructor:

• Ellipse(Point p1, Point p2);

These points will represent the lower left and upper right corners of the bounding box
of the ellipse. Major axis of the ellipse is assumed be parallel to x-axis.

ShapeGroup have these methods:

• bool addShape(Rectangle r1);

bool addShape(Triangle t1);
bool addShape(Ellipse e1);

These methods add the given shape to shape group if shape group is empty or the
given shape has a non-empty intersection with at least one of the shapes in the shape
group. If it does not intersect with any of the shapes in the shape group, do not add it.
The return value is true if is added, false otherwise.

• bool merge(ShapeGroup s1);

This method adds all the shapes of s1 to the shape group, if there exists two
intersecting shapes, one from each shape group. If there is no intersection, do not
merge. The return value is true if you merged, false otherwise.

• int removeShapes(point p1);

Detect which shapes of the shape group include the point and remove these shapes
from the group. A shape includes a point if the point is on the sides of the shape or
inside the shape. The methods should return the number of removed shapes.

print method has the format as follows:

If it is rectangle:

Rectangle x1 y1 x2 y2

where (x1, y1) is lower left corner and (x2, y2) is upper right corner. There should be
newline character at the end.

If it is triangle:

Triangle x1 y1 x2 y2 x3 y3

where the points ((x1, y1) (x2, y2) (x3, y3)) are in the order they are given while
constructing the shape (values may be different from initial values because of move
and scale operations). There should be newline character at the end.

If it is ellipse:

Ellipse x1 y1 x2 y2

where (x1, y1) is left focus and (x2, y2) is the right focus. There should be newline
character at the end.

If it is shape group, print the shapes in the order they are added. Merge operation adds
the shapes of second group after shapes of first group.

Defining virtual methods like isInside(Point) and doesIntersect(…) in Shape class will be
helpful for you. But you are free to define or not.

Specifications:

• For detailed information, you can take a look at wikipedia.
• You can define more public or private methods, or other classes. But the names and

types are strict for the methods and classes given.
• You can assume that constructors will be called with reasonable parameters.
• You will have two files. One is hw5.h for your class declarations, structures etc.; the

other is hw5.cpp for your definitions. You should not write main function in these
files.

• You will submit a single tar file hw5.tar including hw5.h and hw5.cpp. You can tar
your files with the command “tar cvf hw5.tar hw5.cpp hw5.h”. Do not send me in
other formats like “.tar.gz”, “.rar”, “.zip” etc.

• You will submit your codes through cow system. Specifications (file name, method
names, class name, types etc.) are strict. Breaking any of them will cost you getting a
0 since black box method is used.

