
CENG 242

Hw #1
Spring 2007/2008

(Due: March 16th, 2008 Sunday 23:59)

You are given a list of binary trees. All the nodes of trees are numbered with an integer.
You can merge two trees if the root of one has the same number with one of the leafs of
the other. A sample figure is given below.

8

12 55

43 24 6

24

15 22

17

8

12 55

43 24 6

15 22

17

Tree 1 Tree 2 Merged Tree

You can merge Tree 1 and Tree 2 and get Merged Tree as shown in the figure. You
should write a Haskell code merging the given list of trees. The tree is defined as
follows:

data Tree = Empty | Branch Integer Tree Tree

You will write a function mergeTrees in the form:

mergeTrees::[Tree]->Tree

Constraints:

• A number will appear at most twice in the given list of trees and a number will appear

at most once in a tree.
• If there are more than one solutions, both will be considered OK.
• If all of the trees in the given list can be merged to a single tree, you should give the

merged tree as a result. Otherwise, you should return Empty.
• All the trees in the list will be nonempty.

Examples:

• mergeTrees [Branch 8 (Branch 12 (Branch 43 Empty Empty) (Branch 24

Empty Empty)) (Branch 55 Empty (Branch 6 Empty Empty)), Branch 24
(Branch 15 Empty Empty) (Branch 22 (Branch 17 Empty Empty) Empty)]

This is the example given in the figure and the result is:

(Branch 8 (Branch 12 (Branch 43 Empty Empty) (Branch 24 (Branch 15
Empty Empty) (Branch 22 (Branch 17 Empty Empty) Empty))) (Branch 55
Empty (Branch 6 Empty Empty)))

• mergeTrees [Branch 6 (Branch 7 Empty Empty) Empty, Branch 5 (Branch

6 Empty Empty) Empty, Branch 7 Empty (Branch 8 Empty Empty)]

(Branch 5 (Branch 6 (Branch 7 Empty (Branch 8 Empty Empty)) Empty)
Empty)

• mergeTrees [Branch 5 Empty (Branch 10 Empty Empty), Branch 9 (Branch

3 Empty Empty) (Branch 5 (Branch 8 Empty Empty) Empty), Branch 10
Empty (Branch 33 Empty Empty)]

You can merge first and third trees but second tree can not be merged with any other. So
the result is:

Empty

Specifications:

• All the work should be done individually.
• Your codes should be written in Haskell and have the name “Hw1.hs”.
• Your code should have the module Hw1 (i.e. your code should start with: module

Hw1 where)
• In evaluation, black box method will be used. So, be careful about names of

functions, data structures etc.
• You will submit your codes through cow system.
• You should test your codes in inek machines with hugs before submitting.\

Note:

You can not view a Tree in interpreter if you do not implement a show function for it. So
use this function in order to see your trees:

showTree :: Tree -> String
showTree Empty = "Empty"
showTree (Branch x left right) = "(Branch " ++ show x ++ " " ++ showTree left
++ " " ++ showTree right ++ ")"

