
CENG 242

Hw #3
Spring 2007/2008

(Due: April 13th, 2008 Sunday 23:59)

In this homework, you will implement a simplified CFG (context free grammar). In this
simplified CFG, there will be non-terminal symbols represented by upper case English
characters (‘A’ to ‘Z’) and terminal symbols represented by lower case English characters
(‘a’ to ‘z’), and the rules are defined as S -> w where S is a single non-terminal symbol
and w is string of terminals/non-terminals or empty symbol. Empty symbol is represented
by the character ‘#’. Also this simplified CFG will not have any type of recursion. An
example is:

S -> aTb
S -> U
U -> Tbc
T -> cc
T -> #
T -> aa

For the definition and details of CFG, you can have a look at
http://en.wikipedia.org/wiki/Context-free_grammar

You should have a module called CFG having the following functions (to clarify what
exactly they do, look at the example section):

• createCFG :: Char -> CFG

This function will create a CFG getting a start variable. The internal representation of the
CFG is up to you.

• insertRule :: CFG -> (Char,String) -> CFG

This function will get a CFG and add the given rule to CFG and return it.

• deleteRule :: CFG -> (Char,String) -> CFG

This function will delete the given rule from given CFG and return the resulting CFG.

• canGenerate :: CFG -> String -> Int

This function will return in how many ways, the given string can be generated by the
given CFG. All the characters in the given string will be terminals.

• show :: CFG -> String

This function will be the instance of Show that will show the grammar in tree format.
Detail of the tree format is given below.

For the CFG given above, the tree will be:

and it should be shown as:

S
aTb:S|U:S
accb:aTb:S|ab:aTb:S|aaab:aTb:S|Tbc:U:S
ccbc:Tbc:U:S|bc:Tbc:U:S|aabc:Tbc:U:S

The start symbol
Level 2 nodes represented with their parents
Level 3 nodes represented with their parents
Level 4 nodes represented with their parents

The strings will be ‘|’ separated, no blanks in
between any characters, each line is newline
character separated. The order of lines is
important but order in the same line is not
important.

Example:

c1 = createCFG ‘S’
c2 = insertRule c1 (‘T’,”aUb”)
s1 = show c2
c4 = insertRule c2 (‘T’,”aaVa”)
c5 = insertRule c4 (‘V’,”a”)
c6 = insertRule c5 (‘T’,”V”)
c7 = insertRule c6 (‘V’,”#”)
c8 = deleteRule c7 (‘S’,”a”)
c9 = deleteRule c8 (‘V’,”a”)
c10 = insertRule c9 (‘T’,”UaV”)

create the CFG with start symbol S
insert the rule T -> aUb
the result is shown below
insert the rule T -> aaVa
insert the rule V -> a
insert the rule T -> V
insert the rule V -> ε
no such rule, so return the same CFG
the rule V -> a is deleted
insert the rule T -> UaV

c11 = insertRule c10 (‘V’,”b”)
s2 = show c11
i1 = canGenerate c11 “a”
c12 = insertRule c11 (‘S’,”Va”)
i2 = canGenerate c12 “ab”
s3 = show c12
c13 = insertRule c12 (‘T’,”V”)
c14 = insertRule c13 (‘T’,”ab”)
c15 = insertRule c14 (‘S’,”Tb”)
c16 = insertRule c15 (‘T’,”#”)
s4 = show c16
i3 = canGenerate c16 b

insert the rule V -> b
the result is shown below
will return 0
insert the rule S -> Va
will return 0
the result is shown below
the rule is present, don’t insert
insert the rule T -> ab
insert the rule S -> Tb
insert the rule T -> ε
the result is shown below
will return 2

The results of the s1, s2, s3 and s4:

s1 S (Note: It should end with newline character)
s2 S (Note: It should end with newline character)
s3 S

Va:S
a:Va:S|ba:Va:S

s4 S
Va:S|Tb:S
a:Va:S|ba:Va:S|aUbb:Tb:S|aaVab:Tb:S|Vb:Tb:S|UaVb:Tb:S|abb:Tb:S|b:Tb:
S
aaab:aaVab:Tb:S|aabab:aaVab:Tb:S|b:Vb:Tb:S|bb:Vb:Tb:S|Uab:UaVb:Tb:S|
Uabb:UaVb:Tb:S

Explanation for i1, i2 and i3:

i1: Since ‘S’ has no definition yet, we return 0
i2: Since ‘S’ has only one definition (S->Va), it can generate only “a” and “ba”, so it can
not generate “ab”, so return 0
i3: “b” can be generated either by S -> Tb -> Vb -> b or S -> Tb -> b. So we return 2

Specifications:

• All the work should be done individually.
• Your codes should be written in Haskell and have the name “CFG.hs”.
• Your code should have the module CFG and export only the given methods.
 module CFG(CFG, createCFG, insertRule, deleteRule,canGenerate,show) where
• In evaluation, black box method will be used. So, be careful about names, types etc.
• You will submit your codes through cow system.
• You should test your codes in inek machines with hugs before submitting.

