Updated on April 4™ 2009, Saturday 01:00

CENG 242

Homework #3
(Due: April 14th 2009, Tuesday 23:55)

In this homework you will implement an abstract data type QuadTree for Quad trees in Haskell. You
will implement interface functions to manipulate this data type. In addition, you will be required
operator instances so that QuadTree will be overloading (+,-,*,negate) functions
of the Num class and be a member of Show class.

The region quadtree represents a partition of space in two dimensions by decomposing the region into
four equal quadrants, subquadrants, and so on with each leaf node containing data corresponding to a
specific subregion. Each node in the tree either has exactly four children, or has no children (a leaf

node). [1]

We will not give you the type signature of QuadT ree. You will implement it anyway you want and
hide the type internals. That's the spirit of abstract data type as you shall remember.

Your module should look like:

module QuadTree (QuadTree, interface functions) where
data QuadTree = internal definition of type
definitions of interface and auxiliary functions

interface functions are the interface functions the module will export. These functions are explained
below. internal definitions of type can be anything useful. You will not export any type constructor
given here.

You will implement the following interface functions:
new n
new :: Integer — QuadTree
Creates an initial QuadTree using (0,0) and (n-1,n-1) as diagonal corners where,
(0,0) — bottom-left point
(n-1,n-1) — top-right point
(0,n-1) — top-left point
(n-1,0) — bottom-right point.

insert (pointl,point2) tree

insert :: ((Integer,Integer),(Integer,Integer))->QuadTree->QuadTree

Gets a rectangle with diagonal corner points pointl and point2 and inserts this rectangle to the
given QuadTree. Keep in mind that (pointl,point2) can be (top-right,bottom-left) or (bottom-left,top-
right).

http://en.wikipedia.org/wiki/Quadtree#The_region_quadtree

Updated on April 4™ 2009, Saturday 01:00

Examples:

insert ((0,0), (3,3)) (new 8)

.

insert ((3,5), (2,2)) (new 8)

L

insert ((1,3), (0,2)) (insert ((2,0), (3,5)) (new 8))

-*t

insert ((0,8) , (15,15)) (insert ((8,0), (15,23)) (new 32))

-*t

Updated on April 4™ 2009, Saturday 01:00

delete (pointl,point2) tree

delete :: ((Integer,Integer),(Integer,Integer))->QuadTree->QuadTree

Gets a rectangle with diagonal corner points pointl and point2 and deletes this rectangle from
the given QuadTree.

delete ((256,256) , (511,511)) (insert ((767,767) , (0,0)) (new 1024))

(+) treel tree2
(+) :: QuadTree -> QuadTree -> QuadTree
Returns the union of two QuadTrees.

(-) treel tree2
(-) :: QuadTree -> QuadTree -> QuadTree
Returns the difference of two QuadTrees.

Updated on April 4™ 2009, Saturday 01:00

(*) treel tree2
(*) :: QuadTree -> QuadTree -> QuadTree
Returns the intersection of two QuadTrees.

negate tree
negate :: QuadTree->QuadTree
Returns the complement of a QuadTree.

negate

show tree
show is inherited from Show class. You will implement QuadTree as an instance of this
class. Type signature of Show is given as:

show :: Show a => a — String

You will implement the instance as:
instance Show QuadTree

Updated on April 4™ 2009, Saturday 01:00

The output string will be in Lisp-like syntax with some indentation. Leaf nodes are shown as:
((xmin,ymin),(xmax,ymax) Empty) or ((xmin,ymin),(xmax,ymax) Full)

where (x1,y1), (x2,y2) are the corners of the leaf node.
Internal nodes are shown as:

child1 (north east)

child2 (north west)

child3 (south west)
child4 (south east)

)

new 10 -- this line is a command

((0,0) (9,9) Empty)

insert ((7.23) . (0.16)) (new 32) --this line is a command

(
((16,16) (31,31) Empty)
(
((8,24) (15,31) Empty)
((0,24) (7,31) Empty)
((0,16) (7,23) Full)
((8,16) (15,23) Empty)
)
((0,0) (15,15) Empty)
((16,0) (31,15) Empty)
)

Corresponding quadtree is:

Notes

Updated on April 4™ 2009, Saturday 01:00

Check the size compatibility of QuadTrees with guards in your operator definitions. Your
program should give a pattern match error for QuadTree operations on incompatible trees.
When inserted/deleted rectangles are off the boundary, use the part that stays between
boundaries for further steps. If the whole rectangle is off boundary, you can just return the
QuadTree without change.

Put the module and nothing else in file QuadTree . hS. You can have any auxiliary definitions
under where in module definition as long as they are not exported outside.

IMPORTANT: When you cannot divide the QuadTree area into 4 equal parts, divide the area
in this manner (Xdim,Ydim represents X and Y dimension size of the area):
top-right — biggest area. Corners: (Xdim/2,Ydim/2) (Xdim-1,Y-dim-1)
bottom-left — smallest area. Corners: (0,0) (Xdim/2-1,Ydim/2-1)
top-left / bottom-right — equal areas. bigger than bottom-left, smaller than top-right.
When splitting 1x2 and 2x1 areas, use null leaves for non-existing points of the square:
For 1x2 area:
upper square — top-right
lower square — bottom-right
For 2x1 area:
left square — top-left
right square — top-right

Related 3x3 quadtree diagram (grey squares are null leaves):

When showing these QuadTrees with null leaves, you won't print anything for null

leaves:
insert ((0.0) . (0.1)) (new 3) -- this line is a command
(
((1,1) (2,2) Empty)
(
((0,2) (0,2) Empty)
((0,1) (0,1) Full)
)

((0,0) (0,0) Full)
((1,0) (2,0) Empty)

Updated on April 4™ 2009, Saturday 01:00
Specifications

All the work should be done individually.

Your codes should be written in Haskell and have the name “QuadTree.hs”

In evaluation, black box method will be used. So be careful about the name of functions, data
structures etc.

You will submit your code through Cow system.

You should test your codes in inek machines with hugs before submitting.

References

[1] - http://en.wikipedia.org/wiki/Quadtree#The region guadtree

http://en.wikipedia.org/wiki/Quadtree#The_region_quadtree

