
CENG242

Homework #5

(Due: May 23th, 2010 Sunday 23:55)

In this homework, you are asked to implement some unit classes in a game. The
game is a turn based strategy game. It will be played on an n x n board. There are
two teams namely RED and BLUE teams. Each team has one king. In addition to
that, each team consists of different types of Warriors. These types are King,
Swordsman, Archer, Cavalry and CavalryArcher. Each Warrior type has different
move, attack and sight ranges which means a warrior can see, move, and attack
to a limited area (King has the same ranges with cavalary). These ranges are
given in the ranges table with red color. In the game, you don't know the whole
board, you will just know the objects in your sight range. Throughout the game
the following coordinate system will be used. You are expected to obey this
coordinate system while giving deltaX, deltaY (position to the current warrior
which is in 0,0) values. The first coordinate is deltaX, the second one is deltaY.

-2, 2 -1, 2 0, 2 1, 2 2, 2
-2, 1 -1, 1 0, 1 1, 1 2, 1
-2, 0 -1, 0 0, 0 1, 0 2, 0
-2, -1 -1, -1 0, -1 1, -1 2, -1
-2, -2 -1, -2 0, -2 1, -2 2, -2

When the king dies, the game will end and the winner would be the side with the
living king. When the maximum number of turn is reached then there will be no
winner, it will be a drawn.

Swordsman and cavalry have always got their weapons with them, but archer
and cavalry archer has limited amount of arrows. If he is out of arrow, he cannot
attack anyone until it reaches a square with unowned arrows. When an archer or
a cavalry archer dies, and if he has some arrow left, then those arrows will stay
in that square until an archer or a cavalry archer reaches to that square. The
number of those arrows will be added to the number of current arrows of the
archer/cavalry archer who took them.

Each team has equal number of total warriors. However, they don’t have to have
equal number of swordsman, or archer or etc at the beginning. In a turn, all the
warriors make their moves one by one. The king of the red team takes the first
act, and then the king of the blue team. After that swordsmen act, then archers,
after that cavalries, and finally cavalry archers make their moves. A warrior
cannot move and attack at the same turn. When you attack to an enemy, the
square that you’re standing doesn't change. A warrior cannot move to a square
in which there is already a warrior standing on. Archers cannot shoot an enemy
if there is a player in between but cavalry archers can shoot even there is a
warrior in between. By saying “in between”

what do we mean? In the below table the squares including X refer to
the squares that cannot be shot when there is a warrior (represented
with O) in the neighbor square connected with a line. For ex; to shoot
a warrior standing on 0, 2 according to the archer, there must be no
one on 0, 1. Also if there is a warrior on -1, -1 then the archer cannot
shoot the warriors on -1, -2 and -2, -1 according to the archer.

Ranges

 Move Attack Sight

Swordsman

 S

 S

 S

Archer

 A

 A

 A

Cavalry

 C

 C

 C

CavalryArcher

 X

 X

 X

 X X X

X X

X A X

X X

 X X X

Below there are some classes that you should implement. The Warrior class is
given to you and you should implement the derived classes.

enum Side { RED, BLUE };

enum ActType { MOVE, SWORDATTACK, ARROWATTACK, NOACT };

struct Act

{

 ActType type;

 int deltaX;

 int deltaY;

};

enum ObjectType {KING, SWORDSMAN, ARCHER, CAVALRY,

CAVALRYARCHER, ARROW, BORDER};

struct Object

{

 Side teamSide;

 ObjectType objType;

 int deltaX;

 int deltaY;

 int arrowAmount;

};

class Warrior

{

private:

 Side side;

public:

 Warrior(Side _side) : side(_side) { };

 virtual ~Warrior() { };

 Side getSide() const { return side; };

 virtual Act act(std::vector<Object>& list) = 0;

 friend class Game;

};

class Swordsman : public Warrior

{

public:

 Swordsman(Side _side) : Warrior(_side) { }

 Act act(std::vector<Object>& list);

 friend class Game;

};

class Archer : public virtual Warrior

{

private:

 int arrowAmount;

public:

 Archer(Side _side, int _arrowAmount) : Warrior(_side) {

arrowAmount = _arrowAmount; }

 int getArrowAmount() const { return arrowAmount; }

 Act act(std::vector<Object>& list);

 friend class Game;

};

class Cavalry : public virtual Warrior

{

public:

 Cavalry(Side _side) : Warrior(_side) { }

 Act act(std::vector<Object>& list);

 friend class Game;

};

class CavalryArcher : public Cavalry, public Archer

{

public:

 CavalryArcher(Side _side, int _arrowAmount) :

Cavalry(_side), Archer(_side, _arrowAmount), Warrior(_side) {

}

 Act act(std::vector<Object>& list);

 friend class Game;

};

class King : public Cavalry

{

public:

 King(Side _side) : Cavalry(_side), Warrior(_side) { }

 Act act(std::vector<Object>& list);

 friend class Game;

};

In this homework you will implement unimplemented functions; also you can
add new functions and data members. In each turn act functions of the warriors
will be called .

Don't forget that you are not going to know the whole board, you will see objects
which are just in your sight range. Also you can attack according to your attack
range and move according to your move range. Every warrior should do the
following step first in act function:

If there’s an enemy king that you can attack, attack him.

King

Since you are the king, try not to make any act that you can get killed:

 If you are in the attack range of just one enemy, and if you can attack him
then attack him.

 If you can't attack him or if you're in the attack range of more than one
enemy, then try moving to a safe square which is not in the attack range
of any enemies.

 If there is no such square (mentioned above) and if you can attack an
enemy, attack. If you cannot attack an enemy move randomly.

 If you aren’t in the attack range of any enemies, and if there is an enemy
that you can attack, attack him. Otherwise, hold position.

Swordsman

 If there are enemies that you can attack, attack the one which is closest to
you (according to Manhattan distance). If there are more than one such
enemy, choose randomly.

 If there is no enemy that you can attack and if there is an enemy king in
your sight range, try to move closer to him. If there is no enemy king but
there is a non-king enemy warrior in your sight range try to move closer
to him.

 If there’s no enemy in the sight range, move randomly.

Archer

 If there are enemies that you can attack, attack the one which is closest to
you (according to Manhattan distance). If there are more than one such
enemy choose randomly.

 If your arrows run out, and if there is an unowned arrow in your sight,
and if it is in your movement range, move to it. If it isn’t in your
movement range, move closer to it.

 Otherwise, hold position.

Cavalry

 If there are enemies that you can attack, attack the one which is closest to
you (according to Manhattan distance). If there are more than one such
enemy choose randomly.

 If there is no enemy that you can attack and if there is an enemy king in
your sight range, try to move closer to him. If there is no enemy king but
there is a non-king enemy warrior in your sight range try to move closer
to him.

 If there’s no enemy in the sight range, move randomly.

CavalryArcher

 If there are enemies that you can attack, attack the one which is closest to
you (according to Manhattan distance). If there are more than one such
enemy choose randomly.

 If your arrows run out, and if there is an unowned arrow in your sight,
and if it is in your movement range, move to it. If it isn’t in your
movement range, move closer to it.

 Otherwise, move randomly.

Specifications:

1. All the work should be done individually.

2. In evaluation, black box method will be used. So be careful about the

name of functions, data structures etc.

3. You will submit your code through Cow system.

4. Your codes should be written in C++ and you should submit a tar file

hw5.tar. The tar file should include hw5.h, hw5.cpp. In hw5.h, you should

include class declarations, structures, and enumerated types. In hw5.cpp,

you should include the definitions. The main.cpp and a sample game class

(runs the game) will be given. But you shouldn’t submit these files.

5. You should test your codes in inek machines by compiling with g++ before

submitting.

