
CENG 242

Homework #1

(Due: March 18th 2011, Friday 23:55)

In this homework, you will be given a list of simple paths (i.e. paths with no repeated
vertices) where each vertex is labeled and has an associated value. Your aim is to
construct a graph such that an edge between two vertices exists if these vertices are
adjacent in one of the paths. The values of the vertices should be equal to sum of the
values of vertices having the same label in the list of paths.

For the sake of simplicity, it will be assumed that the resulting graph will always be a
binary tree where a vertex ‘u’ is an ancestor of another vertex ‘v’ only if ‘u’ precedes
‘v’ in every path in which ‘v’ is present.

Assume that Path and Tree types are defined as:
	
data Path = Nil | Node Char Integer Path
data Tree = Empty | Leaf Char Integer

 | Branch Char Integer Tree Tree
	

	
Figure 1

The character in a path node denotes the label of the vertex, whereas the integer
denotes the value of the vertex. Same idea applies to the tree definition.

You will write a function hw1 that will return the resulting tree, in the form:
	
hw1 :: [Path] -> Tree

Notes
• The assumption on the resulting graph (i.e. that it will be a binary tree) has

important consequences. As an example, every non-empty path in the list will
have the same root vertex. You should make use of these implications in your
implementation. Figure.2 shows sample inputs that will NOT be tested.

• You should note that the tree structure is redundant. For the output, your
function can produce any possible tree representation for a tree.

	
Figure 2

Examples
hw1 [(Node 'A' 2 (Node 'B' 2 (Node 'C' 1 Nil))), (Node
'A' 3 (Node 'D' 4 Nil))] –check Figure.1

>>> (Branch 'A' 5 (Branch 'D' 4 Empty Empty) (Branch 'B'
2 (Leaf 'C' 1) Empty)) or

>>> (Branch 'A' 5 (Branch 'B' 2 (Branch 'C' 1 Empty
Empty) Empty) (Branch 'D' 4 Empty Empty)) or any other
equivalent representation

hw1 [(Node 'A' 1 (Node 'B' 13 (Node 'C' (-1) (Node 'D' 0
Nil))))] –check Figure.1

>>>(Branch 'A' 1 (Branch 'B' 13 (Branch 'C' -1 (Leaf 'D'
0) Empty) Empty) Empty) or any other equivalent
representation.

hw1 [Nil, (Node 'A' 1 (Node 'B' 3 (Node 'C' 1 Nil))),
(Node 'A' 3 (Node 'D' 3 Nil)), (Node 'A' (-1) (Node 'B'
(-2) (Node 'F' 2 (Node 'G' 1 Nil)))), Node 'A' 0 Nil,
(Node 'A' 1 (Node 'D' 3 (Node 'H' 1 Nil)))] –check
Figure.1

>>> (Branch 'A' 4 (Branch 'B' 1 (Leaf 'C' 1) (Branch 'F'
2 (Leaf 'G' 1) Empty)) (Branch 'D' 6 (Leaf 'H' 1) Empty))
or any other equivalent representation

Specifications:	
• All	 work	 should	 be	 done	 individually.	
• Your	 codes	 should	 be	 written	 in	 Haskell	 and	 have	 the	 name	 “hw1.hs”.	 You	

should	 create	 a	 module	 named	 Hw1	 and	 implement	 hw1	 function	 with	
the	 specified	 type.	

• For the inputs that won’t be tested, the behavior of your program is
unspecified (you are free in your implementation for such cases, you do not
have to report error in any way).

• In	 evaluation,	 black	 box	 method	 will	 be	 used.	 So	 be	 careful	 about	 the	
name	 of	 functions,	 data	 structures	 etc.	

• You	 will	 submit	 your	 code	 through	 Cow	 system.	
• You	 should	 test	 your	 codes	 in	 inek	 machines	 with	 hugs	 before	 submitting.	

	

