
CENG 242

Homework #1

(Due: March 18th 2011, Friday 23:55)

In this homework, you will be given a list of simple paths (i.e. paths with no repeated
vertices) where each vertex is labeled and has an associated value. Your aim is to
construct a graph such that an edge between two vertices exists if these vertices are
adjacent in one of the paths. The values of the vertices should be equal to sum of the
values of vertices having the same label in the list of paths.

For the sake of simplicity, it will be assumed that the resulting graph will always be a
binary tree where a vertex ‘u’ is an ancestor of another vertex ‘v’ only if ‘u’ precedes
‘v’ in every path in which ‘v’ is present.

Assume that Path and Tree types are defined as:
	

data Path = Nil | Node Char Integer Path
data Tree = Empty | Leaf Char Integer

 | Branch Char Integer Tree Tree
	

	

Figure 1

The character in a path node denotes the label of the vertex, whereas the integer
denotes the value of the vertex. Same idea applies to the tree definition.

You will write a function hw1 that will return the resulting tree, in the form:
	

hw1 :: [Path] -> Tree

Notes
• The assumption on the resulting graph (i.e. that it will be a binary tree) has

important consequences. As an example, every non-empty path in the list will
have the same root vertex. You should make use of these implications in your
implementation. Figure.2 shows sample inputs that will NOT be tested.

• You should note that the tree structure is redundant. For the output, your
function can produce any possible tree representation for a tree.

	

Figure 2

Examples
hw1 [(Node 'A' 2 (Node 'B' 2 (Node 'C' 1 Nil))), (Node
'A' 3 (Node 'D' 4 Nil))] –check Figure.1

>>> (Branch 'A' 5 (Branch 'D' 4 Empty Empty) (Branch 'B'
2 (Leaf 'C' 1) Empty)) or

>>> (Branch 'A' 5 (Branch 'B' 2 (Branch 'C' 1 Empty
Empty) Empty) (Branch 'D' 4 Empty Empty)) or any other
equivalent representation

hw1 [(Node 'A' 1 (Node 'B' 13 (Node 'C' (-1) (Node 'D' 0
Nil))))] –check Figure.1

>>>(Branch 'A' 1 (Branch 'B' 13 (Branch 'C' -1 (Leaf 'D'
0) Empty) Empty) Empty) or any other equivalent
representation.

hw1 [Nil, (Node 'A' 1 (Node 'B' 3 (Node 'C' 1 Nil))),
(Node 'A' 3 (Node 'D' 3 Nil)), (Node 'A' (-1) (Node 'B'
(-2) (Node 'F' 2 (Node 'G' 1 Nil)))), Node 'A' 0 Nil,
(Node 'A' 1 (Node 'D' 3 (Node 'H' 1 Nil)))] –check
Figure.1

>>> (Branch 'A' 4 (Branch 'B' 1 (Leaf 'C' 1) (Branch 'F'
2 (Leaf 'G' 1) Empty)) (Branch 'D' 6 (Leaf 'H' 1) Empty))
or any other equivalent representation

Specifications:	

• All	
 work	
 should	
 be	
 done	
 individually.	

• Your	
 codes	
 should	
 be	
 written	
 in	
 Haskell	
 and	
 have	
 the	
 name	
 “hw1.hs”.	
 You	

should	
 create	
 a	
 module	
 named	
 Hw1	
 and	
 implement	
 hw1	
 function	
 with	

the	
 specified	
 type.	

• For the inputs that won’t be tested, the behavior of your program is
unspecified (you are free in your implementation for such cases, you do not
have to report error in any way).

• In	
 evaluation,	
 black	
 box	
 method	
 will	
 be	
 used.	
 So	
 be	
 careful	
 about	
 the	

name	
 of	
 functions,	
 data	
 structures	
 etc.	

• You	
 will	
 submit	
 your	
 code	
 through	
 Cow	
 system.	

• You	
 should	
 test	
 your	
 codes	
 in	
 inek	
 machines	
 with	
 hugs	
 before	
 submitting.	

	

