
CENG 242

Homework #3

(Due: April 15th 2011, Friday 23:55)

In this homework, you will write an abstract data type, named DPDA, representing a

deterministic pushdown automaton and provide interface functions for its

manipulation and simulation.

A deterministic pushdown automaton is a finite state machine that can make use of a

stack. A pushdown automaton can be represented as a 7-tuple

),,,,,,(0 FZqQP where

 Q is a finite set of states.

 is a finite set of input alphabet.

 is a finite set of stack alphabet.
 where { }, is the transition function. It

represents the transitions between states.

q0 is the initial state,

q0 Q.

 is the initial stack symbol.

 F is the set of accepting states

F Q.

State transitions occur based on the current state, current input and the value at the top

of the stack. Since DPDA is deterministic, there exists at most one transition from a

state for each input, stack symbol tuple. The transition logic is follows:

The tuple (p, a, A, q, B), where , , , and represents a

transition from state p to state q when a is the current input and A is the topmost stack

symbol, replacing A with B after the transition. If

B (if is the empty string),

nothing is pushed onto the stack. Note that the topmost element is always popped

from the stack in a transition, and a string (which may be empty) is pushed onto the

stack. When stack contents are represented as a string , , , the leftmost

character represent the element at the top, and string represents the remaining

elements in stack.

In this homework, the DPDA’s won’t have -transitions (i.e. transitions where).

This assumption holds for both manipulation and simulation of DPDA’s and you do

not have to consider -transitions in your representation of DPDA’s.

A deterministic pushdown automaton (without -transitions)

computes as follows. It accepts input if can be written as ,

where each and sequences of states and strings

exist that satisfy the following three conditions. The strings represent the sequence

of stack contents that has on the accepting branch of the computation.

1. and . This condition signifies that M starts out properly, in the

start state and with an empty stack.

2. For , we have where and

 for some , and . This condition states that

moves properly according to the state, stack, and next input symbol.

3. . This condition states that an accept state occurs at the input end.

You are not given the internals of DPDA type; you are free to use any possible

representation for pushdown automata. However, you should strictly obey to the

interface specifications.

Your module should look like

module Hw3 (DPDA, interface functions) where

 data DPDA = internal definition of type

 definitions of interface and auxiliary functions

interface functions are given below and you should export them in your module. You

can define arbitrary auxiliary functions and types.

Please implement the following the interface functions in your module:

 createDPDA :: [Integer] -> [Char] -> [Char] -> Char ->

Integer -> DPDA

This function will create a DPDA. The first parameter is the set of states, the second

parameter is the input alphabet, the third parameter is the stack alphabet, the fourth

parameter is the initial stack symbol which will belong to the stack alphabet, and the

fifth parameter is the initial state which will belong to the set of states. Initially, the

stack should only have the initial stack symbol.

 addState :: DPDA -> Integer -> DPDA

This function will add the given state to the DPDA. If state is in the DPDA, function

should return the same DPDA.

 removeState :: DPDA -> Integer -> DPDA

This function will delete the given state from the DPDA. All transitions involving the

state should be removed as well. Note that the deleted state can also be an accepting

state. If the state is not in the DPDA or the state is the starting state, function should

return the same DPDA.

 addTransition :: DPDA -> (Integer, Char, Char, Integer,

String) -> DPDA

This function will add the given transition to the DPDA. The transition is represented

by a quintuple. Given a transition (p, a, A, q, B), you should add a transition from

state p to state q when a is read from the input and A is the current stack symbol,

replacing A with B (read the introduction for dealing with). If the transition

elements are not from the corresponding sets (states and alphabets) or the transition is

already present in the DPDA or adding the transition violates the definition of a

DPDA, function should return the same DPDA.

 removeTransition :: DPDA -> (Integer, Char, Char, Integer

String) -> DPDA

This function will delete the given transition from the DPDA. If the transition is
not in the DPDA, the function should return the same DPDA.

 setAcceptingState :: DPDA -> Integer -> DPDA

This function will set the given state as an accepting state. If the state is not in the

DPDA or it’s already an accepting state, function should return the same DPDA.

 unsetAcceptingState :: DPDA -> Integer -> DPDA

This function will return a DPDA in which the given state is removed from the set of

accepting states. If the state does not exist or it’s not an accepting state, function

should return the same DPDA.

 accepts :: DPDA -> String -> Bool

This function should return True if the given DPDA accepts the given string.

Otherwise it should return False.

 show :: DPDA -> String

DPDA should be an instance of Show class. show function should produce an output

as follows:

initialState=q0

inputAlphabet=[a1,a2,…]

stackAlphabet=[a1,a2,a3,…]

states=[state1,state2,state3,…]

transitions=[(p,a,A,q,B),…]

acceptingStates=[state1,state2,state3,…]

The lists in the representation should be sorted. Transitions should be sorted starting

from the first (leftmost) element (e.g. (2,'a','A',3,"B")<(2,'a','B',4,"C")

).

Example
p1 = createDPDA [0, 1, 2] ['0', '1', '2'] ['0', '$'] '$' 0

p2 = addState p1 3 –We add a new state to p1

p3 = setAcceptingState p2 3 –3 is the accepting state

p4 = addTransition p3 (0, '0', '$', 1, "0$")

p5 = addTransition p4 (1, '0', '0', 1, "00")

p6 = addTransition p5 (1, '1', '0', 2, "")

p7 = addTransition p6 (2, '1', '0', 2, "")

p8 = addTransition p7 (2, '2', '$', 3, "") –DPDA accepts 0
n
1
n
2

p9 = removeTransition p8 (3, '1', '0', 3, "") – p9 equals p8

accepts p9 "0001112" –evaluates to True

p9 –should produce the following output (when evaluated from

the command prompt)

initialState=0

inputAlphabet=[0,1,2]

stackAlphabet=[$,0]

states=[0,1,2,3]

transitions=[(0,0,$,1,0$),(1,0,0,1,00),(1,1,0,2,),(2,1,0,2,),(

2,2,$,3,)]

acceptingStates=[3]

Specifications:
1. All the work should be done individually.

2. Your codes should be written in Haskell and have the name “Hw3.hs”

3. In evaluation, black box method will be used. So be careful about the name of

interface functions. You should create a module named Hw3 and export the

necessary functions and DPDA type.

4. You will submit your code through Cow system.

5. You should test your codes in inek machines with hugs before submitting.

