
CENG-336
Introduction to Embedded

Systems Development

CENGCENG--336336
Introduction to Embedded Introduction to Embedded

Systems DevelopmentSystems Development

InterruptsInterrupts

CENG-336 Introduction to Embedded Systems Development 2

Modern processors provide facilities for being
interrupted by external devices.

This is more efficient than the processor asking devices
if they need attention (polling).

Programmed I/O - the status of the I/O device is
checked by the program

Interrupt I/O - the I/O device request the interrupt,
and an interrupt handling routine or interrupt service
routine is needed

InterruptsInterrupts

CENG-336 Introduction to Embedded Systems Development 3

InterruptsInterrupts

�� An An interruptinterrupt is a is a (temporary) (temporary) break in break in
the flow of execution of the flow of execution of a a programprogram
� the CPU is said to be “interrupted”

�� When an interrupt occurs, the CPU When an interrupt occurs, the CPU
deals with the interruption, then carries deals with the interruption, then carries
on where it on where it was was left offleft off
� ISR programmer should put the CPU back
to normal operation.

CENG-336 Introduction to Embedded Systems Development 4

1. Suppose you are sitting at home, chatting to
someone.

2. Suddenly the telephone rings.

3. You stop chatting, and pick up the telephone to speak
to the caller.

4. When you have finished your telephone conversation,
you go back to chatting to the person before the
telephone rang.

You can think of
� the main routine as you chatting to someone,
� the telephone ringing causes you to interrupt your chatting,

and
� the interrupt routine is the process of talking on the

telephone.
� When the telephone conversation has ended, you then go

back to your main routine of chatting.

InterruptInterrupt ExampleExample

CENG-336 Introduction to Embedded Systems Development 5

Interrupt ExampleInterrupt Example

This example is exactly how an This example is exactly how an
interrupt causes a processor to act.interrupt causes a processor to act.

�� The main program is running, performing The main program is running, performing
some function in a circuit, some function in a circuit,
� but when an interrupt occurs the main program halts
while another routine is carried out.

��When this routine finishes, the processor When this routine finishes, the processor
goes back to the main routine again. goes back to the main routine again.

CENG-336 Introduction to Embedded Systems Development 6

Generally, each interrupt changes the program flow, interrupts iGenerally, each interrupt changes the program flow, interrupts it and t and
after executing an interrupt subprogram (interrupt after executing an interrupt subprogram (interrupt ––serviceservice-- routine) routine)
it continues from that same point on. it continues from that same point on.

PIC InterruptsPIC Interrupts

CENG-336 Introduction to Embedded Systems Development 7

Sources of InterruptsSources of Interrupts

�� Typical sources of interrupts on the PIC Typical sources of interrupts on the PIC
includeinclude

�� a positive (rising) or negative (falling) a positive (rising) or negative (falling)
transition on the RB0/INT input, transition on the RB0/INT input,

�� a change on any of the inputs RB4 a change on any of the inputs RB4 -- RB7 or RB7 or
�� a timer / counter overflow from a value of a timer / counter overflow from a value of
FFH to 00H.FFH to 00H.

CENG-336 Introduction to Embedded Systems Development 8

Sources of Interrupts ...Sources of Interrupts ...
�� These sources generally include one interruptThese sources generally include one interrupt

source for each peripheral module, though some source for each peripheral module, though some
modules may generate multiple interruptsmodules may generate multiple interrupts (such as (such as
the USART module). the USART module).
The current interrupts are:
� RB0/INT Pin Interrupt (external interrupt)
� TMR0 Overflow Interrupt
� PORTB Change Interrupt (pins RB7:RB4)
� Comparator Change Interrupt
� Parallel Slave Port Interrupt
� USART Interrupts
� Receive Interrupt
� Transmit Interrupt
� A/D Conversion Complete Interrupt
� LCD Interrupt.
� Data EEPROM Write Complete Interrupt
� Timer1 Overflow Interrupt
� Timer2 Overflow Interrupt
� CCP Interrupt
� SSP Interrupt

CENG-336 Introduction to Embedded Systems Development 9

INTCONINTCON

�� Inside the PIC there is a register called INTCON, Inside the PIC there is a register called INTCON,
and is at address 0Bh.and is at address 0Bh.

�� Within this register there are 8 bits that can be Within this register there are 8 bits that can be
enabled or disabled.enabled or disabled.

�� Bit 7 of INTCON is called GIE.Bit 7 of INTCON is called GIE.
�� This is the Global Interrupt Enable.This is the Global Interrupt Enable.
�� Setting this to 1 tells the PIC that we are going to use an Setting this to 1 tells the PIC that we are going to use an

interrupt.interrupt.

CENG-336 Introduction to Embedded Systems Development 10

INTCONINTCON

�� Bit 4 of INTCON is called INTE, Bit 4 of INTCON is called INTE,
�� which means which means INTINTerrupterrupt EEnable.nable. Setting this bit to 1 tells Setting this bit to 1 tells

the PIC that RB0 will be an interrupt pin.the PIC that RB0 will be an interrupt pin.

�� Setting bit 3, called RBIE, Setting bit 3, called RBIE,
�� tells the PItells the PICC that we will be using Port B bits 4 to 7.that we will be using Port B bits 4 to 7.

CENG-336 Introduction to Embedded Systems Development 11

External interrupt on External interrupt on
RB0/INT pinRB0/INT pin

�� External interrupt on RB0/INT pin is triggered by External interrupt on RB0/INT pin is triggered by
�� rising edge, if bit INTEDG=1 (in OPTION<6> register),rising edge, if bit INTEDG=1 (in OPTION<6> register),
�� falling edge, if INTEDG=0. falling edge, if INTEDG=0.

�� When correctWhen correct signal appears on INT pin, INTF bitsignal appears on INT pin, INTF bit is is
set in INTCON register. set in INTCON register.

�� INTF bit (INTCON<1>) must be reset in interrupt INTF bit (INTCON<1>) must be reset in interrupt
routine, so that interrupt would not occur again while routine, so that interrupt would not occur again while
going back to the main program. going back to the main program.
�� This is an important part of the program, which the This is an important part of the program, which the

programmer must not forget, or program will constantly go programmer must not forget, or program will constantly go
into interrupt routine. into interrupt routine.

�� Interrupt can be turned off by resetting INTE Interrupt can be turned off by resetting INTE
control bit control bit (INTCON<4>).(INTCON<4>).

CENG-336 Introduction to Embedded Systems Development 12

TMR0 Counter Overflow TMR0 Counter Overflow
InterruptInterrupt

�� Overflow of TMR0 counter (from FFhto 00h) will set Overflow of TMR0 counter (from FFhto 00h) will set
T0IF (INTCON<2>) bit. T0IF (INTCON<2>) bit.

�� This is very important interrupt because many real This is very important interrupt because many real
problems can be solved using this interrupt. problems can be solved using this interrupt.

�� One of One of the examples is time measurement. the examples is time measurement.
�� If we know how much time counter needs in order to If we know how much time counter needs in order to

complete one cycle from 00h to FFh, then a number of complete one cycle from 00h to FFh, then a number of
interrupts multiplied by that amount of time will yield the interrupts multiplied by that amount of time will yield the
total of elapsed time. total of elapsed time.

�� In interrupt routine some variable would be incremented (in In interrupt routine some variable would be incremented (in
RAM memory). Value of that variable multiplied by the RAM memory). Value of that variable multiplied by the
amount of time the amount of time the counter needs to count through a whole counter needs to count through a whole
cycle, would yield total elapsed time. cycle, would yield total elapsed time.

�� Interrupt can Interrupt can be turned on/off by setting/resetting be turned on/off by setting/resetting
T0IE (INTCON<5>) bit.T0IE (INTCON<5>) bit.

CENG-336 Introduction to Embedded Systems Development 13

Interrupt [Pins 4Interrupt [Pins 4--7 of Port B]7 of Port B]
�� Change of input signal on PORTB <7:4> sets RBIF Change of input signal on PORTB <7:4> sets RBIF

(INTCON<0>) bit.(INTCON<0>) bit.

�� Four pins RB7 to RB4 of port B, can trigger an Four pins RB7 to RB4 of port B, can trigger an
interrupt which occurs when status on them changesinterrupt which occurs when status on them changes
from logic one to logic zero, or vice versa. from logic one to logic zero, or vice versa.

�� For pins to be sensitive to this change, they must be For pins to be sensitive to this change, they must be
defined as input. defined as input.

�� If any one of them is defined as output, interrupt will If any one of them is defined as output, interrupt will
not be generated at the change of status. not be generated at the change of status.

�� If they are defined as input, their current state is If they are defined as input, their current state is
compared to the old value which was stored at the compared to the old value which was stored at the
last reading from port B. last reading from port B.

�� Interrupt can be turned on/off by setting/resetting Interrupt can be turned on/off by setting/resetting
RBIE bit RBIE bit (bit 3) (bit 3) in INTCON register.in INTCON register.

CENG-336 Introduction to Embedded Systems Development 14

Interrupt upon finishing writeInterrupt upon finishing write--
subroutine to EEPROMsubroutine to EEPROM

�� This interrupt is of practical nature only. This interrupt is of practical nature only.

�� Since writing to oneEEPROM location takes about 10ms Since writing to oneEEPROM location takes about 10ms
(which is a long time in the notion of a microcontroller), it (which is a long time in the notion of a microcontroller), it
doesn't pay off to a microcontroller to wait for writing to doesn't pay off to a microcontroller to wait for writing to
the end.the end.

�� Thus interrupt mechanism is added which allows the Thus interrupt mechanism is added which allows the
microcontroller to continue executing the main program, microcontroller to continue executing the main program,
while writing in EEPROM is being done in the background. while writing in EEPROM is being done in the background.

�� When writing is completed, interrupt informs the When writing is completed, interrupt informs the
microcontrollermicrocontroller that writing has ended. that writing has ended.

�� EEIF bit, through which this informing is done, is found in EEIF bit, through which this informing is done, is found in
EECON1 register.EECON1 register.

�� Occurrence of an interrupt can be disabled by resetting Occurrence of an interrupt can be disabled by resetting
the EEIE bit in INTCON register.the EEIE bit in INTCON register.

CENG-336 Introduction to Embedded Systems Development 15

Bit 7 GIE (Global Interrupt Enable bit) Bit which enables or disables all interrupts.
1 = all interrupts are enabled 0 = all interrupts are disabled

Bit 6 PEIE (EEPROM Write Complete Interrupt Enable bit) Bit which enables an
interrupt at the end of a writing routine to EEPROM
1 = interrupt enabled 0 = interrupt disabled

If PEIE and EEIF (which is in EECON1 register) are set simultaneously , an
interrupt will occur.

INTCONINTCON

CENG-336 Introduction to Embedded Systems Development 16

Bit 5 T0IE (TMR0 Overflow Interrupt Enable bit) Bit which enables interrupts
during counter TMR0 overflow.
1 = interrupt enabled 0 = interrupt disabled

If T0IE and T0IF are set simultaneously, interrupt will occur.

Bit 4 INTE (INT External Interrupt Enable bit) Bit which enables external
interrupt from pin RB0/INT.
1 = external interrupt enabled 0 = external interrupt disabled

If INTE and INTF are set simultaneously, an interrupt will occur.

INTCONINTCON

CENG-336 Introduction to Embedded Systems Development 17

Bit 3 RBIE (RB port change Interrupt Enable bit) Enables interrupts to occur at the
change of status of pins 4, 5, 6, and 7 of port B.
1 = enables interrupts at the change of status 0 =interrupts disabled at the change
of status

If RBIE and RBIF are simultaneously set, an interrupt will occur.

Bit 2 T0IF (TMR0 Overflow Interrupt Flag bit) Overflow of counter TMR0.
1 = counter changed its status from FFh to 00h 0 = overflow did not occur

Bit must be cleared in program in order for an interrupt to be detected.

INTCONINTCON

CENG-336 Introduction to Embedded Systems Development 18

Bit 1 INTF (INT External Interrupt Flag bit) External interrupt occurred.
1 = interrupt occurred 0 = interrupt did not occur

If a rising or falling edge was detected on pin RB0/INT, (which is defined with bit
INTEDG in OPTION register), bit INTF is set.

Bit 0 RBIF (RB Port Change Interrupt Flag bit) Bit which informs about changes on
pins 4, 5, 6 and 7 of port B.
1 = at least one pin has changed its status 0 = no change occurred on any of the pins

Bit has to be cleared in an interrupt subroutine to be able to detect further
interrupts.

INTCONINTCON

CENG-336 Introduction to Embedded Systems Development 19

Interrupt InitializationInterrupt Initialization
�� In order to use an interrupt mechanism of a In order to use an interrupt mechanism of a

microcontroller, some preparatory tasks need to be microcontroller, some preparatory tasks need to be
performed ("initializationperformed ("initialization““).).

�� By initialization we define By initialization we define
�� to what interruptsto what interrupts the microcontroller will respond, and the microcontroller will respond, and
�� which ones it will ignore. which ones it will ignore.

�� If we do not set the bit that allows a certain If we do not set the bit that allows a certain
interrupt, program will not execute aninterrupt, program will not execute an interrupt interrupt
subprogram. subprogram.

�� Through this we can obtain control over interrupt Through this we can obtain control over interrupt
occurrence, which is very useful.occurrence, which is very useful.

CENG-336 Introduction to Embedded Systems Development 20

What Happens?What Happens?

�� On interrupt, On interrupt,
�� the processor saves the return address on the processor saves the return address on
the stack and the stack and

�� program control is redirected to the program control is redirected to the
interrupt service routine. interrupt service routine.

�� It is important to note that aside from It is important to note that aside from
the return address no registers are the return address no registers are
saved. saved.

�� However the user may save such However the user may save such
important registers as W and STATUS. important registers as W and STATUS.

CENG-336 Introduction to Embedded Systems Development 21

WWhat happens in the hat happens in the
program and in the PIC?program and in the PIC?

� First, a ‘flag’ is set.
�This tells the internal processor of the PIC
that an interrupt has occurred.

� Secondly, the program counter points to
a particular address within the PIC.

CENG-336 Introduction to Embedded Systems Development 22

EExternalxternal IInterruptnterrupt
�� WWhen hen externalexternal interrupt occurs, interrupt occurs, INTFINTF will be set to will be set to

1. While there isn1. While there isn’’t an interrupt, the flag is kept at 0.t an interrupt, the flag is kept at 0.

�� WWhile this flag is set to 1, PIC cannot, and will not, hile this flag is set to 1, PIC cannot, and will not,
respond to any other interrupt.respond to any other interrupt.

�� If this flag was not set to 1,If this flag was not set to 1,
�� PIC is allowed to keep responding to the interrupt, PIC is allowed to keep responding to the interrupt,
�� then continually pulsing the pin will keep the PIC going back then continually pulsing the pin will keep the PIC going back

to the start of our interrupt routine, and never finishing it.to the start of our interrupt routine, and never finishing it.

�� Although PIC automatically sets this flag to 1, it Although PIC automatically sets this flag to 1, it
doesndoesn’’t set it back to 0!t set it back to 0!
�� That task has to be done by the programmer after the PIC That task has to be done by the programmer after the PIC

has executed the interrupt routine.has executed the interrupt routine.

CENG-336 Introduction to Embedded Systems Development 23

Initially ...Initially ...
�� When you first power up the PIC, or if there When you first power up the PIC, or if there
is a reset, is a reset,
�� Program Counter points to address 0000h, which is right at Program Counter points to address 0000h, which is right at

the start of the program memory.the start of the program memory.

�� WWhen there is an interrupt, Program Counter hen there is an interrupt, Program Counter
will point to address 0004h.will point to address 0004h.

�� WWhen we are writing our programs that are hen we are writing our programs that are
going to have interrupts, going to have interrupts,
�� first of all, we have to tell the PIC to jump over address first of all, we have to tell the PIC to jump over address

0004h, and 0004h, and
�� keep the interrupt routine which starts at address 0004h keep the interrupt routine which starts at address 0004h

separate from the rest of the program. separate from the rest of the program.

CENG-336 Introduction to Embedded Systems Development 24

Coding ...Coding ...
�� SStart tart thethe program with a command called program with a command called
ORG.ORG.
� This command means Origin, or start.
� We follow it with an address.
� Because the PIC will start at address 0000h, we type
“ORG 0000h”.

�� Next we need to skip over address 0004h.Next we need to skip over address 0004h.
� We do this by placing a GOTO instruction, followed by
a label which points to our main program.

CENG-336 Introduction to Embedded Systems Development 25

Coding ...Coding ...
�� We then follow this GOTO command with another We then follow this GOTO command with another
ORG, this time with the address 0004h.ORG, this time with the address 0004h.
� It is after this command that we enter our interrupt
routine.

� Now, we could either type in our interrupt routine
directly following the second ORG command, or we can
place a GOTO statement which points to the interrupt
routine.

�� To tell the PIC that it has come to the end of the To tell the PIC that it has come to the end of the
interrupt routine we need to place the command interrupt routine we need to place the command
RTFIE at the end of the routine.RTFIE at the end of the routine.
� This command means return from the interrupt
routine.

� When the PIC see this, the Program Counter points to
the last location the PIC was at before the interrupt
happened.

CENG-336 Introduction to Embedded Systems Development 26

Coding ...Coding ...
ORG 0000hORG 0000h ;PIC starts here on power up and reset;PIC starts here on power up and reset

GOTO startGOTO start ;;GotoGoto our main program our main program

ORG 0004h ORG 0004h ;The PIC will come here on an interrupt;The PIC will come here on an interrupt

: : ;This is our interrupt routine that we;This is our interrupt routine that we

: : ;want the PIC to do when it receives;want the PIC to do when it receives

: : ;an interrupt;an interrupt

.

.

.

RETFIE RETFIE ;End of the interrupt routine ;End of the interrupt routine

start start ;This is the start of our main program.;This is the start of our main program.

CENG-336 Introduction to Embedded Systems Development 27

OOr ...r ...
� On interrupt, program flow is directed to program

location 004H.

� As “reset” directs program flow to 000H, a program
using interrupts is usually structured as follows;

ORG 000H ; a reset redirects program to this point
GOTO MAIN

ORG 004H ; an interrupt redirects the program to here
GOTO INT_SERV

MAIN:
; Your main program

; end of main

INT_SERV:
; your interupt service routine

CENG-336 Introduction to Embedded Systems Development 28

Coding ...Coding ...

�� There are two things you should be There are two things you should be
aware of when using interrupts.aware of when using interrupts.
�� The The firstfirst is that, if you are using the same is that, if you are using the same
register in your main program and the register in your main program and the
interrupt routine, bear in mind that the interrupt routine, bear in mind that the
contents of the register will probably contents of the register will probably
change when the interrupt occurs.change when the interrupt occurs.

�� The way to get around this, is to The way to get around this, is to
temporarily store the contents of the w temporarily store the contents of the w
register before you use it again in the register before you use it again in the
interrupt routine.interrupt routine.

CENG-336 Introduction to Embedded Systems Development 29

Coding ...Coding ...
�� The The secondsecond is that, there is a delay between when is that, there is a delay between when

one interrupt occurs and when the next one can one interrupt occurs and when the next one can
occur.occur.

�� PIC has an external clock, which can either be a PIC has an external clock, which can either be a
crystal or it can be a resistorcrystal or it can be a resistor--capacitor combination.capacitor combination.
� Whatever the frequency of this clock, the PIC divides it by

4 and then uses this for it’s internal timing.
� This internal timing is called an Instruction Cycle.

�� DData sheet states that you must allow 3 to 4 ata sheet states that you must allow 3 to 4
instruction cycles between interrupts.instruction cycles between interrupts.
� Allow 4 cycles.
� The reason for the delay is the PIC needs time to jump to

the interrupt address, set the flag, and come back out of the
interrupt routine.

CENG-336 Introduction to Embedded Systems Development 30

Coding ...Coding ...

� A point to remember is that if you use
bits 4 to 7 of Port B as an interrupt:
�You cannot select individual pins on Port B
to serve as an interrupt.

�So, if you enable these pins, then they are
all available.

�For example, you can’t just have bits 4 and
5 – bits 6 and 7 will be enabled as well.

CENG-336 Introduction to Embedded Systems Development 31

ExampleExample

� The program we are going to write will
� count the number of times we turn a switch
on,

� and then display the number.

� The program will
� count from 0 to 9, displayed on 4 LEDs in
binary form,

� and the input or interrupt will be on RB0.

CENG-336 Introduction to Embedded Systems Development 32

EExxampleample
�� TThe first thing we need to do is tell the PIC to jump he first thing we need to do is tell the PIC to jump

over the address where the Program Counter points over the address where the Program Counter points
to when an interrupt occurs.to when an interrupt occurs.

org 0x00 ;This is where the PC points to on power up

;and reset

goto main ;Goto our main program

org 0x04 ;This is where our interrupt routine
; will start

retfie ;This tells the PIC that the interrupt
;routine has finished and the PC will

;point back to the main program

main ;This is the start of our main program

CENG-336 Introduction to Embedded Systems Development 33

�� Now we need to tell the PIC that we are going to use Now we need to tell the PIC that we are going to use
interrupts, and we are using RB0 pin 6 as an interrupt interrupts, and we are using RB0 pin 6 as an interrupt
pin:pin:

bsf INTCON,7 ;GIE – Global interrupt enable
;(1=enable)

bsf INTCON,4 ;INTE - RB0 interrupt enable
;(1=enable)

�� We are going to clear the interrupt flag just in caseWe are going to clear the interrupt flag just in case

bcf INTCON,1 ;INTF - Clear flag bit just in case

EExxampleample

CENG-336 Introduction to Embedded Systems Development 34

�� Now we need to set up our two ports.Now we need to set up our two ports. Remember that Remember that
as we are using RB0 as an interrupt pin, this must be as we are using RB0 as an interrupt pin, this must be
set up as an input:set up as an input:

bsf STATUS,5 ;Switch to Bank 1
movw 0x01 ;
movwf TRISB ;Set RB0 as input
movlw 0x10 ;
movwf TRISA ;Set the first 4 pins on PortA as output
bcf STATUS,5 ;Come back to Bank 0

EExxampleample

CENG-336 Introduction to Embedded Systems Development 35

�� We are going to use a variable called COUNT to store We are going to use a variable called COUNT to store
the number of switch counts.the number of switch counts.

loop

movf COUNT,0 ;Move the contents of COUNT into W

movwf PORTA ;Now move it to Port A

goto loop ;Keep on doing this

end ;End of our program

EExxampleample

CENG-336 Introduction to Embedded Systems Development 36

� We need to tell the PIC what to do when an interrupt
happens.

� In this instance, our interrupt is going to be the
switch.

� What we want the PIC to is add one to the variable
COUNT each time the switch is closed.

� However, we only want to display the number of times
the switch closes from 0 to 9.

� Port A has 5 bits, and if we just simply incremented
the port, we will have a maximum count of 31.

� There is a reason why we chose not to go up to 31.
� We are going to use a 7-segment display, which can at the

most only go from 0 to 15 (0 to F in hex).

EExxampleample

CENG-336 Introduction to Embedded Systems Development 37

EExxampleample
�� Now the first thing we need to do is temporarily store the Now the first thing we need to do is temporarily store the

contents of our w register, as we are using this to transfer thecontents of our w register, as we are using this to transfer the
contents of COUNT to PORTA.contents of COUNT to PORTA.

�� If we donIf we don’’t store it, then we could send a completely different t store it, then we could send a completely different
number as a result of our arithmetic.number as a result of our arithmetic. So letSo let’’s do that first:s do that first:

movwf TEMP ;Store w register in a temporary location

�� Next we want to add 1 to our variable COUNT:Next we want to add 1 to our variable COUNT:
incf COUNT,1 ;Increment COUNT by 1, and put the result

;back into COUNT

�� Next we want to do a check on COUNT to seNext we want to do a check on COUNT to seee if we have gone if we have gone
past the value of 9.past the value of 9. The way we can do this is to subtract it The way we can do this is to subtract it
from 10.from 10.
movlw 0x0A ;Move the value 10 into w
subwf COUNT,0 ;Subtract w from COUNT, and put the

;result in w

CENG-336 Introduction to Embedded Systems Development 38

EExxampleample
�� If we subtract a large number from a small If we subtract a large number from a small
number a Carry flag will be set.number a Carry flag will be set.

�� This flag will also be set if the numbers are This flag will also be set if the numbers are
equal, and we subtract them.equal, and we subtract them.

btfss STATUS,0 ;Check the Carry flag. It will be set if
;COUNT is equal to, or is greater than w,
;and will be set as a result of the subwf
;instruction

CENG-336 Introduction to Embedded Systems Development 39

EExxampleample
�� Now we know if the value of COUNT is 9 or more. Now we know if the value of COUNT is 9 or more.

�� What we want to do now is if COUNT is greater than What we want to do now is if COUNT is greater than
9, put it back to 0, otherwise go back to the main 9, put it back to 0, otherwise go back to the main
program so that we can send it to Port A.program so that we can send it to Port A.

�� BTFSS command as you know will skip the next BTFSS command as you know will skip the next
instruction if the carry flag is set instruction if the carry flag is set i.ei.e.. COUNT = 10:COUNT = 10:

goto carry_on ;If COUNT is <10, then we can carry on
goto clear ;If COUNT is >9, then we need to clear it

carry_on
bcf INTCON,0x01 ;We need to clear this flag to enable

;more interrupts
movfw TEMP ;Restore w to the value before the interrupt
retfie ;Come out of the interrupt routine

clear
clrf COUNT ;Set COUNT back to 0
bcf INTCON,1 ;We need to clear this flag to enable

;more interrupts
retfie ;Come out of the interrupt routine

CENG-336 Introduction to Embedded Systems Development 40

AltogetherAltogether
org 0x00 ;This is where we come on power up and reset

;*******************SETUP CONSTANTS*******************

INTCON EQU 0x0B ;Interrupt Control Register

PORTB EQU 0x06 ;Port B register address

PORTA EQU 0x05 ;Port A register address

TRISA EQU 0x85 ;TrisA register address

TRISB EQU 0x86 ;TrisB register address

STATUS EQU 0X03 ;Status register address

COUNT EQU 0x0c ;This will be our counting variable

TEMP EQU 0x0d ;Temporary store for w register

goto main ;Jump over the interrupt address

CENG-336 Introduction to Embedded Systems Development 41

;***************INTERRUPT ROUTINE***************
org 0x04 ;This is where PC points on an interrupt
movwf TEMP ;Store the value of w temporarily
incf COUNT,1 ;Increment COUNT by 1, and put the result

;back into COUNT
movlw 0x0A ;Move the value 10 into w
subwf COUNT,0 ;Subtract w from COUNT, and put the result in w
btfss STATUS,0 ;Check the Carry flag. It will be set if COUNT is

;equal to, or is greater than w, and will be set as a
;result of the subwf instruction

goto carry_on ;If COUNT is <10, then we can carry on
goto clear ;If COUNT is >9, then we need to clear it
carry_on
bcf INTCON,0x01 ;We need to clear this flag to enable

;more interrupts
movfw TEMP ;Restore w to the value before the interrupt
retfie ;Come out of the interrupt routine
clear
clrf COUNT ;Set COUNT back to 0
bcf INTCON,1 ;We need to clear this flag to enable

;more interrupts
retfie ;Come out of the interrupt routine

AltogetherAltogether

CENG-336 Introduction to Embedded Systems Development 42

AltogetherAltogether
;******************* Main Program *********************
main
;************** Set Up The Interrupt Registers ***********
bsf INTCON,7 ;GIE – Global interrupt enable (1=enable)
bsf INTCON,4 ;INTE - RB0 Interrupt Enable (1=enable)
bcf INTCON,1 ;INTF - Clear FLag Bit Just In Case
;****************** Set Up The Ports ******************
bsf STATUS,5 ;Switch to Bank 1
movlw 0x01
movwf TRISB ;Set RB0 as input
movlw 0x10
movwf TRISA ;Set R 0 to RA3 on PortA as output
bcf STATUS,5 ;Come back to Bank 0
;********* Now Send The Value Of COUNT To Port A ********
loop
movf COUNT,0 ;Move the contents of Count into W
movwf PORTA ;Now move it to Port A
goto loop ;Keep on doing this
end ;End Of Program

CENG-336 Introduction to Embedded Systems Development 43

�� NextNext is the circuit diagram that will work for the is the circuit diagram that will work for the
code above.code above.

�� First, First, wwe have not included a timing capacitor in the e have not included a timing capacitor in the
oscillator circuit.oscillator circuit.
� This is a clever little trick that you can try if you run out of capacitors.
� The capacitance comes from the stray capacitance between the oscillator

pin and ground.
� so, with the resistor and the stray capacitance, we have an RC oscillator.

�� Secondly, We have included a deSecondly, We have included a de--bouncing circuit bouncing circuit
across the switch.across the switch.
� This is needed because every time you flick a switch, the contacts will

bounce.
� This will make the PIC think there have been more than one switches.
� With the de-bouncing circuit, when the switch goes high, the capacitor

charges up.
� no matter how many times the switch goes to +5V, the capacitor will only

charge once.
� The capacitor is discharged when the switch is thrown the other way.

Notes ...Notes ...

CENG-336 Introduction to Embedded Systems Development 44

Circuit DiagramCircuit Diagram

CENG-336 Introduction to Embedded Systems Development 45

Notes ...Notes ...

�� The user may control the sources of The user may control the sources of
interrupts. For example;interrupts. For example;

BSF INTCON, INTE ; enable interupts on RB0/INT

BSF INTCON, RBIE ; enable change in RB4 - RB7 interrupt
BSF INTCON, TOIE ; enable timer interrupt

�� Any of these may be used alone, or Any of these may be used alone, or
several sources may be enabled, several sources may be enabled,
depending on your application.depending on your application.

CENG-336 Introduction to Embedded Systems Development 46

Notes ...Notes ...

�� In addition to INTCONIn addition to INTCON, if the device has , if the device has
peripheral interrupts, then it will have peripheral interrupts, then it will have
registers to enable the peripheralregisters to enable the peripheral interrupts interrupts
and registers to hold the interrupt flag bits. and registers to hold the interrupt flag bits.
Depending on the device, the registersDepending on the device, the registers are:are:
� PIE1 Peripheral Interrupt Enable Register
� PIR1 Peripheral Interrupt Flag Register
� PIE2
� PIR2

CENG-336 Introduction to Embedded Systems Development 47

PIE Register(s)PIE Register(s)
�� Depending on the number of peripheral Depending on the number of peripheral
interrupt sources, there may be multiple interrupt sources, there may be multiple
Peripheral InterruptPeripheral Interrupt Enable registers (PIE1, Enable registers (PIE1,
PIE2). PIE2).

�� These registers contain the individual enable These registers contain the individual enable
bits for thebits for the Peripheral interrupts. Peripheral interrupts.

�� These registers will be generically referred These registers will be generically referred
to as PIE. to as PIE.

�� If the device has aIf the device has a PIE register, The PEIE PIE register, The PEIE
bit must be set to enable any of these bit must be set to enable any of these
peripheral interrupts.peripheral interrupts.

CENG-336 Introduction to Embedded Systems Development 48

PIE Register(s)PIE Register(s)
�� Although, the PIE register bits have a general bit Although, the PIE register bits have a general bit

location with each register, future devices maylocation with each register, future devices may not not
have consistent placement. have consistent placement.

�� Bit location inconsistencies will not be a problem if Bit location inconsistencies will not be a problem if
you use theyou use the supplied Microchip Include files for the supplied Microchip Include files for the
symbolic use of these bits. symbolic use of these bits.

�� This will allow the Assembler/Compiler to This will allow the Assembler/Compiler to
automatically take care of the placement of these automatically take care of the placement of these
bits by specifying the correctbits by specifying the correct register and bit name.register and bit name.

�� Note:Note:
� Bit PEIE (INTCON<6>) must be set to enable any of the

peripheral interrupts.

CENG-336 Introduction to Embedded Systems Development 49

PIE RegisterPIE Register
�� TMR1IETMR1IE : TMR1 Overflow Interrupt Enable bit: TMR1 Overflow Interrupt Enable bit

1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow
interrupt bit

�� TMR2IETMR2IE: TMR2 to PR2 Match Interrupt Enable bit: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2

match interrupt bit

�� CCP1IECCP1IE: CCP1 Interrupt Enable bit: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt bit

�� CCP2IECCP2IE: CCP2 Interrupt Enable bit: CCP2 Interrupt Enable bit
1 = Enables the CCP2 interrupt 0 = Disables the CCP2 interrupt bit

�� SSPIESSPIE: Synchronous Serial Port Interrupt Enable bit: Synchronous Serial Port Interrupt Enable bit
1 = Enables the SSP interrupt 0 = Disables the SSP interrupt bit

�� RCIERCIE: USART Receive Interrupt Enable bit: USART Receive Interrupt Enable bit
1 = Enables the USART receive interrupt 0 = Disables the USART receive

interrupt

� 8 more

CENG-336 Introduction to Embedded Systems Development 50

PIRPIR

�� These registers contain the individual flag These registers contain the individual flag
bits for the peripheralbits for the peripheral interrupts. interrupts.

�� Very similar to PIEVery similar to PIE

CENG-336 Introduction to Embedded Systems Development 51

Edge TriggeringEdge Triggering
�� IndicateIndicate PIC to interrupt when the signal goes PIC to interrupt when the signal goes

� from low to high, or
� from high to low.

�� By default, this is set up to be on the rising edgeBy default, this is set up to be on the rising edge (low (low
to high)to high)

�� EEdge dge ‘‘triggeringtriggering’’ is set up in another register called is set up in another register called
the OPTION register, at address 81h.the OPTION register, at address 81h.
� The bit we are interested in is bit 6, which is called INTEDG.
� Setting this to 1 will cause the PIC to interrupt on the rising edge

(default state) and
� setting it to 0 will cause the PIC to interrupt on the falling edge.
� If you want the PIC to trigger on the rising edge, then you don’t

need to do anything to this bit.

�� Option register is in Bank 1, which means that Option register is in Bank 1, which means that
� we have to change from bank 0 to bank 1,
� set the bit in the Option register,
� then come back to bank 0.

CENG-336 Introduction to Embedded Systems Development 52

INT and External InterruptsINT and External Interrupts
�� The external interrupt on the INT pin is edge triggered: The external interrupt on the INT pin is edge triggered:

�� either rising if the INTEDG biteither rising if the INTEDG bit (OPTION<6>) is set, or (OPTION<6>) is set, or
�� falling, if the INTEDG bit is clear. falling, if the INTEDG bit is clear.

�� When a valid edge appears on the INTWhen a valid edge appears on the INT pin, the INTF flag bit pin, the INTF flag bit
(INTCON<1>) is set. (INTCON<1>) is set.

�� This interrupt can be enabled/disabled by setting/clearingThis interrupt can be enabled/disabled by setting/clearing the the
INTE enable bit (INTCON<4>). INTE enable bit (INTCON<4>).

�� The INTF bit must be cleared in software in the interruptThe INTF bit must be cleared in software in the interrupt
service routine before reservice routine before re--enabling this interrupt. enabling this interrupt.

�� The INT interrupt can wakeThe INT interrupt can wake--up the processorup the processor from SLEEP, if from SLEEP, if
the INTE bit was set prior to going into SLEEP. the INTE bit was set prior to going into SLEEP.

�� The status of the GIE bit decidesThe status of the GIE bit decides whether or not the processor whether or not the processor
branches to the interrupt vector following wakebranches to the interrupt vector following wake--up. up.

�� See theSee the ““Watchdog Timer and Sleep ModeWatchdog Timer and Sleep Mode”” section for details section for details
on SLEEP and for timing of wakeon SLEEP and for timing of wake--upup from SLEEP through INT from SLEEP through INT
interrupt.interrupt.

CENG-336 Introduction to Embedded Systems Development 53

Saving the STATUS and W Saving the STATUS and W
Registers in RAMRegisters in RAM

MOVWF W_TEMP ; Copy W to a Temporary Register

; regardless of current bank

SWAPF STATUS,W ; Swap STATUS nibbles and place

; into W register

BCF STATUS,RP0 ; Change to Bank0 regardless of

; current bank

MOVWF STATUS_TEMP ; Save STATUS to a Temporary register

; in Bank0

:

: (Interrupt Service Routine (ISR))

:

SWAPF STATUS_TEMP,W ; Swap original STATUS register value

; into W (restores original bank)

MOVWF STATUS ; Restore STATUS register from

; W register

SWAPF W_TEMP,F ; Swap W_Temp nibbles and return

; value to W_Temp

SWAPF W_TEMP,W ; Swap W_Temp to W to restore original

; W value without affecting STATUS

CENG-336 Introduction to Embedded Systems Development 54

More ...More ...

�� Once in the interrupt service routineOnce in the interrupt service routine,, the the
source(s) of the interrupt can be determined source(s) of the interrupt can be determined
by polling (inspecting) the interrupt flag bits. by polling (inspecting) the interrupt flag bits.

�� Individual interrupt flag bits are set Individual interrupt flag bits are set
regardless of the status of theirregardless of the status of their
corresponding mask bit or the GIE bit.corresponding mask bit or the GIE bit.

CENG-336 Introduction to Embedded Systems Development 55

IInitialization and enabling of device interrupts, where PIE1_MASKnitialization and enabling of device interrupts, where PIE1_MASK1 1
valuevalue iis the value to write into the interrupt enable registers the value to write into the interrupt enable register

PIE1_MASK1 EQU B‘01101010’ ; This is the Interrupt
Enable

; Register mask value

:

CLRF STATUS ; Bank0

CLRF INTCON ; Disable interrupts and clear some flags

CLRF PIR1 ; Clear all flag bits

BSF STATUS, RP0 ; Bank1

MOVLW PIE1_MASK1 ; This is the initial masking for PIE1

MOVWF PIE1 ;

BCF STATUS, RP0 ; Bank0

BSF INTCON, GIE ; Enable Interrupts

CENG-336 Introduction to Embedded Systems Development 56

Register Saving / Restoring as MacrosRegister Saving / Restoring as Macros

PUSH_MACRO MACRO ; This Macro Saves register
contents

MOVWF W_TEMP ; Copy W to a Temporary Register

; regardless of current bank

SWAPF STATUS,W ; Swap STATUS nibbles and place

; into W register

MOVWF STATUS_TEMP ; Save STATUS to a Temporary

; register in Bank0

ENDM ; End this Macro

;

POP_MACRO MACRO ; This Macro Restores register
;contents

SWAPF STATUS_TEMP,W ; Swap original STATUS register
value

; into W (restores original bank)

MOVWF STATUS ; Restore STATUS
register from

; W register

SWAPF W_TEMP,F ; Swap W_Temp nibbles and return

; value to W_Temp

SWAPF W_TEMP,W ; Swap W_Temp to W to restore

CENG-336 Introduction to Embedded Systems Development 57

org ISR_ ADDR ;

PUSH_ MACRO ; MACRO that saves required context registers,

; or in-line code

CLRF STATUS ; Bank0

BTFSC PIR1, TMR1IF ; Timer1 overflow interrupt?

GOTO T1_INT ; YES

BTFSC PIR1, ADIF ; NO, A/D interrupt?

GOTO AD_INT ; YES, do A/D thing

: ; NO, do this for all sources

: ;

BTFSC PIR1, LCDIF ; NO, LCD interrupt

GOTO LCD_INT ; YES, do LCD thing

BTFSC INTCON, RBIF ; NO, Change on PORTB interrupt?

GOTO PORTB_INT ; YES, Do PortB Change thing

INT_ERROR_LP1 ; NO, do error recovery

GOTO INT_ERROR_LP1 ; This is the trap if you enter the ISR

; but there were no expected

; interrupts

T1_INT ; Routine when the Timer1 overflows

: ;

BCF PIR1, TMR1IF ; Clear the Timer1 overflow interrupt flag

GOTO END_ISR ; Ready to leave ISR (for this request)

AD_INT ; Routine when the A/D completes

: ;

BCF PIR1, ADIF ; Clear the A/D interrupt flag

GOTO END_ISR ; Ready to leave ISR (for this request)

LCD_INT ; Routine when the LCD Frame begins

: ;

BCF PIR1, LCDIF ; Clear the LCD interrupt flag

GOTO END_ISR ; Ready to leave ISR (for this request)

PORTB_INT ; Routine when PortB has a change

