
1

Input/Output

2

• Embedded system functionality aspects

– Processing

• Transformation of data

• Implemented using processors

– Storage

• Retention of data

• Implemented using memory

– Communication

• Transfer of data between processors and memories

• Implemented using buses

• Called interfacing

Introduction

3

A simple bus

bus structure

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

bus

• Wires:

– Uni-directional or bi-directional

– One line may represent multiple wires

• Bus

– Set of wires with a single function

• Address bus, data bus

– Or, entire collection of wires

• Address, data and control

• Associated protocol: rules for

communication

4

Ports

• Conducting device on periphery

• Connects bus to processor or memory

• Often referred to as a pin

– Actual pins on periphery of IC package that plug into socket on printed-circuit board

– Sometimes metallic balls instead of pins

– Today, metal “pads” connecting processors and memories within single IC

• Single wire or set of wires with single function

– E.g., 12-wire address port

bus

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

port

5

Timing Diagrams

write protocol

rd'/wr

enable

addr

data

tsetup twrite

• Most common method for describing a
communication protocol

• Time proceeds to the right on x-axis

• Control signal: low or high

– May be active low (e.g., go’, /go, or go_L)

– Use terms assert (active) and deassert

– Asserting go’ means go=0

• Data signal: not valid or valid

• Protocol may have subprotocols

– Called bus cycle, e.g., read and write

– Each may be several clock cycles

• Read example

– rd’/wr set low,address placed on addr for at
least tsetup time before enable asserted, enable
triggers memory to place data on data wires
by time tread

read protocol

rd'/wr

enable

addr

data

tsetup tread

6

Basic protocol concepts

• Actor: master initiates, servant (slave) respond

• Direction: sender, receiver

• Addresses: special kind of data

– Specifies a location in memory, a peripheral, or a register within a peripheral

• Time multiplexing

– Share a single set of wires for multiple pieces of data

– Saves wires at expense of time

data serializing address/data muxing

Master Servantreq

data(8)

data(15:0) data(15:0)

mux demux

Master Servantreq

addr/data

req

addr/data

addr data

mux demux

addr data

req

data 15:8 7:0 addr data

Time-multiplexed data transfer

7

Basic protocol concepts: control methods

Strobe protocol Handshake protocol

Master Servantreq

ack

req

data

Master Servant

data

req

data

taccess

req

data

ack

1. Master asserts req to receive data

2. Servant puts data on bus within time taccess

1

2

3

4

3. Master receives data and deasserts req

4. Servant ready for next request

1

2

3

4

1. Master asserts req to receive data

2. Servant puts data on bus and asserts ack

3. Master receives data and deasserts req

4. Servant ready for next request

8

A strobe/handshake compromise

Fast-response case

req

data

wait

1 3

4

1. Master asserts req to receive data

2. Servant puts data on bus within time taccess

3. Master receives data and deasserts req

4. Servant ready for next request

2

Slow-response case

Master Servantreq

wait

data

req

data

wait

1

3

4

1. Master asserts req to receive data

2. Servant can't put data within taccess, asserts wait ack

3. Servant puts data on bus and deasserts wait

4. Master receives data and deasserts req

2

taccess taccess

5. Servant ready for next request

5

(wait line is unused)

9

ISA bus protocol – memory access

Microprocessor Memory I/O Device

ISA bus

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMR

CHRDY

C1 C2 WAIT C3

C4

DATA

• ISA: Industry Standard

Architecture

– Common in 80x86’s

• Features

– 20-bit address

– Compromise

strobe/handshake control

• 4 cycles default

• Unless CHRDY deasserted

– resulting in additional

wait cycles (up to 6)

memory-read bus cycle

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMW

CHRDY

C1 C2 WAIT C3

C4

DATA

ADDRESS

memory-write bus cycle

10

Microprocessor interfacing: I/O addressing

• A microprocessor communicates with other devices

using some of its pins

– Port-based I/O (parallel I/O)

• Processor has one or more N-bit ports

• Processor’s software reads and writes a port just like a register

• E.g., P0 = 0xFF; v = P1.2; -- P0 and P1 are 8-bit ports

– Bus-based I/O

• Processor has address, data and control ports that form a single bus

• Communication protocol is built into the processor

• A single instruction carries out the read or write protocol on the bus

11

Compromises/extensions

• Parallel I/O peripheral

– When processor only supports bus-based I/O but

parallel I/O needed

– Each port on peripheral connected to a register

within peripheral that is read/written by the

processor

• Extended parallel I/O

– When processor supports port-based I/O but

more ports needed

– One or more processor ports interface with

parallel I/O peripheral extending total number of

ports available for I/O

– e.g., extending 4 ports to 6 ports in figure

Processor Memory

Parallel I/O peripheral

Port A

System bus

Port CPort B

Adding parallel I/O to a bus-

based I/O processor

Processor

Parallel I/O peripheral

Port A Port B Port C

Port 0

Port 1

Port 2

Port 3

Extended parallel I/O

12

Types of bus-based I/O:

memory-mapped I/O and standard I/O

• Processor talks to both memory and peripherals using
same bus – two ways to talk to peripherals

– Memory-mapped I/O

• Peripheral registers occupy addresses in same address space as memory

• e.g., Bus has 16-bit address

– lower 32K addresses may correspond to memory

– upper 32k addresses may correspond to peripherals

– Standard I/O (I/O-mapped I/O)

• Additional pin (M/IO) on bus indicates whether a memory or peripheral
access

• e.g., Bus has 16-bit address

– all 64K addresses correspond to memory when M/IO set to 0

– all 64K addresses correspond to peripherals when M/IO set to 1

13

Memory-mapped I/O vs. Standard I/O

• Memory-mapped I/O

– Requires no special instructions

• Assembly instructions involving memory like MOV and ADD work
with peripherals as well

• Standard I/O requires special instructions (e.g., IN, OUT) to move
data between peripheral registers and memory

• Standard I/O

– No loss of memory addresses to peripherals

– Simpler address decoding logic in peripherals possible

• When number of peripherals much smaller than address space then
high-order address bits can be ignored

– smaller and/or faster comparators

14

I/O on 16F877

15

• Term "port" refers to a group
of pins on a microcontroller
which can be accessed
simultaneously, or on which
we can set the desired
combination of zeros and
ones, or read from them an
existing status.

• Physically, port is a register
inside a microcontroller which
is connected by wires to the
pins of a microcontroller.

• Ports represent physical
connection of Central
Processing Unit with an
outside world.

• Microcontroller uses them in
order to monitor or control
other components or devices.

16

• All input and output on the PIC is performed via the

I/O ports.

• I/O ports are like RAM locations with wires leading

from the bits to the pins of the microchip.

17

• PORTA is a 6-bit wide, bi-directional port.

• PORTB, PORTC, and PORTD are an 8-bit wide, bi-directional

ports.

• PORTE is a 3-bit wide, bi-directional port.

• Pin functionality “overloaded” with other features

• Each pin can be individually configured for input or output.

• Configuration controlled through TRISx Register

– Note that these registers are all in bank 1

• Port data controlled through PORTx register

18

19

20

• I/O ports on a PIC are memory mapped.

– This means that to read from or write to a port on a PIC the

program must read from or write to a special RAM location.

– To access PORTA on the 16F877 the program must access

the RAM at address location 5.

21

• The I/O ports on the PIC can be used as either inputs or outputs.

• Configuring a port for input or output is done by setting or clearing the data
direction register for the port.

• On the PIC each bit of each port has a data direction bit.

– Therefore it is possible to set some bits within a port as inputs and others within
the same port as outputs.

• For most ports, the I/O pin’s direction (input or output) is controlled by the
data direction register, called the TRIS register.

– TRIS<x> controls the direction of PORT<x>.

– A ‘1’ in the TRIS bit corresponds to that pin being an input, while a ‘0’
corresponds to that pin being an output.

– An easy way to remember is that a ‘1’ looks like an I (input) and a ‘0’ looks like
an O (output).

– Note that these registers are all in bank 1

22

PORTA 0 0 0 0 0 0 0 0

TRISA 0 0 1 0 0 1 0 1

DIRECTION OUT OUT IN OUT OUT IN OUT IN

To access TRISA on the 16F877 the program must

access the RAM at address location 133 (this is

actually 5 + 128).

23

24

• PORTA is a little different. Since PORTA can be

analog or digital, you also need to tell the PIC that

PORTA is digital.

• This is done by writing 0x06 to ADCON1

25

call Bank1

clrf 0x85 ; TRISA = 0

clrf 0x86 ; TRISB = 0

clrf 0x87 ; TRISC = 0

movlw 6

movwf 0x9F ; ADCON1 = 6

call Bank0

clrf 7 ; PORTC = 0

clrf 6 ; PORTB = 0

clrf 5 ; PORTA = 0

L0:

goto L0 ; stop (infinite loop)

Bank0:

bcf 3,5 ; bcf STATUS, RP0

bcf 3,6 ; bcf STATUS, RP1

return

Bank1:

bsf 3,5 ; bsf STATUS, RP0

bcf 3,6 ; bcf STATUS, RP0

return

26

bsf STATUS, RP0 ;Bank1

movlw 0x0F ;Defining input and output pins

movwf TRISB ;Writing to TRISB register

bcf STATUS, RP0 ;Bank0

bsf PORTB, 4 ;PORTB <7:4>=0

bsf PORTB, 5

bsf PORTB, 6

bsf PORTB, 7

The above example shows how pins 0, 1, 2, and 3 are designated input, and pins 4,
5, 6, and 7 for output, after which PORTB output pins are set to one.

27

initialize_portc:

clrf PORTC ; clear the data register to cause

; outputs to be 0

bsf STATUS,RP0 ; switch to bank 1

movlw 0xBF ; each bit with a 1 is input,

; otherwise output – Bit 6 output

movwf TRISC ; setup the port

bcf STATUS,RP0 ; switch back to bank 0

return ; exit

28

• The RA4 pin is a Schmitt Trigger input and an open

drain output. All other RA port pins have TTL input

levels and full CMOS output drivers.

29

• To add flexibility and functionality to a device, some

pins are multiplexed with an alternate function(s).

• These functions depend on which peripheral features

are on the device.

• In general, when a peripheral is functioning, that pin

may not be used as a general purpose I/O pin.

30

• PORTA is a 6-bit I/O port (shared with A/D converter)

– The operation of each pin is selected by clearing/setting the

control bits in the ADCON1 register (A/D Control

Register1).

• Pin RA4 is multiplexed with the Timer0 module clock

input to become the RA4/T0CKI pin.

31

• PORTD can be configured as an 8-bit wide

microprocessor port (parallel slave port) by setting

control bit PSPMODE (TRISE<4>). In this mode, the

input buffers are TTL.

• 8-bit Parallel Slave Port - function allow another

processor to read from a data buffer in the PIC.

• In Slave mode, it is asynchronously readable and

writable by the external world through RD control

input pin RE0/RD and WR control input pin RE1/WR.

32

Summary

