
PIC16F877 Core Features

• Accumulator Based Machine
• Harvard Architecture Memory (separate program and data memory)

– 8Kx14 Flash Based Instruction Memory
– 368x8 Static Ram Based Data Memory (File Registers)

• 35 Instructions (fixed length encoding - 14-bit)
• 3 Addressing Modes (direct, indirect, relative)
• 8x13 Hardware Stack (8 levels - not visible from program code)
• Execution Speed

– Overlapped Instruction Fetch and Instruction Execution
– 1 cycle/instruction (non-branching)
– 2 cycles/instruction (branching)
– 1 cycle period = 4/CLK_IN (ex. 20Mhz CLK_IN -> 200ns cycle period)



PIC16F877 Peripheral Features

• 3 Timer/counters (programmable prescalars)
– Timer0,Timer2 8-bit
– Timer1 16-bit

• 2 Capture/Compare/PWM modules
– Input capture function records the Timer1 count on a pin transition
– Output compare function transitions a pin when Timer1 matches a programmable 

register
– Pulse width modulation function outputs a square wave with a programmable 

period and duty cycle.

• 10-bit 8 channel analog-to-digital converter
• Synchronous serial port
• USART
• 8-bit Parallel Slave Port - function allow another processor to read from a 

data buffer in the PIC.
• 256 bytes of EEPROM Memory
• Interrupts can be generated from each of the peripherals - single vector with 

a status reg.



PIC16F877 Development Tools

• MPLAB - Integrated Development 
Environment

– Editor

– Build Tools (Assembler and Linker)

– Simulator

• Download for Free @ Microchip.com



Software: Programmers Model

Program Memory

“Burned” in by 

programmer (can’t 

change during 

execution). Stored 

instructions, addresses 

and “literals”

(numbers).

<- 12/14/16 bits    ->

Hardware Stack
Stores addresses for 

subroutines

Program Counter-PCL(PCH)

Status 

Special Purpose

Registers

I/O pin states, 

peripheral 

registers, etc.

General Purpose

Registers

RAM or “data 

memory”. Variables 

are stored here.

W “Register”

<- 8 bits     ->



Memory Organization

• Program Memory

• Register File Memory



Program Memory

• Used for storing compiled code

• Each location is 14 bits long

• Every instruction is coded as a 14 bit word

• Addresses H’000’ and H’004’ are treated 
in a special way

• PC can address up to 8K addresses





Register File Memory

• Consist of 2 Components

�General Purpose Register (GPR) Files 
(RAM)

�Special Purpose Register (SPR) files

• This portion of memory is separated into 
banks of 128 bytes long





Register Addressing Modes

• There are 3 types of addressing modes in 
PIC

�Immediate Addressing 

�Movlw H’0F’

�Direct Addressing

�Indirect Addressing



Direct Addressing

• Uses 7 bits of 14 bit instruction to identify 
a register file address

• 8th and 9th bit comes from RP0 and RP1 
bits of STATUS register.



Indirect Addressing

• Full 8 bit register address is written the 
special function register FSR

• INDF is used to get the content of the 
address pointed by FSR

• Exp : A sample program to clear RAM 
locations H’20’ – H’2F’ .



• for instance, 
– one general purpose register (GPR) at address 0Fh contains a value of 

20
– By writing a value of 0Fh in FSR register we will get a register indicator 

at address 0Fh, 
– and by reading from INDF register, we will get a value of 20, which 

means that we have read from the first register its value without 
accessing it directly (but via FSR and INDF).

• It appears that this type of addressing does not have any 
advantages over direct addressing, but certain needs do exist during 
programming which can be solved smoothly only through indirect 
addressing.

• Indirect addressing is very convenient for manipulating data arrays 
located in GPR registers. 
– In this case, it is necessary to initialize FSR register with a starting 

address of the array, and the rest of the data can be accessed by 
incrementing the FSR register.





Software: Programmers Model

Program Memory

“Burned” in by 

programmer (can’t 

change during 

execution). Stored 

instructions, addresses 

and “literals”

(numbers).

<- 12/14/16 bits    ->

Hardware Stack
Stores addresses for 

subroutines

Program Counter-PCL(PCH)

Status 

Special Purpose

Registers

I/O pin states, 

peripheral 

registers, etc.

General Purpose

Registers

RAM or “data 

memory”. Variables 

are stored here.

W “Register”

<- 8 bits     ->



Some CPU Registers

• STATUS

• PC

• W

• PCL

• PCLATH





the accumulator

• to add two numbers 
together

– first move the 
contents of one file 
register into the w
register

– then add the 
contents of the 
second file register 
to w

– the result can be 
written to w or to the 
second file register



the status register

• the STATUS 
register stores 
‘results’ of the 
operation

• three of the bits of 
the STATUS 
register are set 
based on the result 
of an arithmetic or 
bitwise operation



status register

• three of the bits of the STATUS register are set 

based on the result of an arithmetic or bitwise 

operation

– zero flag ; this bit is set whenever the result of an 
operation is zero

– carry flag ; this bit is set whenever the result of an 
operation is greater than 255 (0xFF) ; can be used to 
indicate that higher order bytes need to be updated

– digit carry flag ; this bit is set whenever the least 
significant four bits of the result of an operation is 
greater than 15 (0x0F) 



programming

• there are only 35 instructions



Instructions

• Data Movement
– movf,movlw,movwf

• Arithmetic
– addlw,addwf,sublw,subwf,incf,decf

• Logical
– andlw,andwf,iorlw,iorwf,xorlw,xorwf,rrf,rlf,clrf,clrw,swapf,comf

• Bit Operators
– bsf,bcf

• Branching
– goto,btfss,btfsc,decfsz,incfsz

• Subroutine
– call,return,retlw,retfie

• Misc.
– sleep,clrwdt,nop



Instruction Set

• Every Instruction is coded in a 14 bit word

• Each instruction takes one cycle to 
execute

• Only 35 instructions to learn (RISC)



Instruction Set

• Uses 7 bits of 14 bit instruction to identify 
register file address

• For most instructions, W register is used 
as a source register

• The result of an operation can be stored 
back to the W register or back to source 
register





For byte-oriented instructions, ’f’ represents a file register designator and ’d’
represents a destination designator. The file register designator specifies which file
register is to be used by the instruction.
The destination designator specifies where the result of the operation is to be placed. If 
’d’ is zero, the result is placed in the W register. If ’d’ is one, the result is placed
in the file register specified in the instruction



For bit-oriented instructions, ’b’ represents a bit field designator which selects the 
number of the bit affected by the operation, while ’f’ represents the address of the
file in which the bit is located.
For literal and control operations, ’k’ represents an eight or eleven bit constant or 
literal value.





addwf instruction

General form:

addwf floc, d d← [floc] + w

floc is a memory location in the file registers (data memory)

w is the working register

d is the destination, can either be the literal ‘f’ or ‘w’

[floc] means “the contents of memory location floc”

addwf 0x70,w w ← [0x70] + w

addwf 0x70,f [0x70] ← [0x70] + w



Move Commands:

movlw 0xF2               :  stores the number 0xF2 into the W register

movwf 0x0C               :  stores the W register contents into file H’0C’

movf 0x0C,w           :  loads the contents of file H’0C’ into W 
register

movf 0x0C,f             :  loads the contents of file H’0C’ into file  
H’0C’



Bit Set/Clear Commands

bcf 0x0C,0            :  clear the 0th bit of file H’0C’

bsf 0x0D,3            :  set the 3rd bit of file H’0D’

btfsc 0x42,0             :  test the 0th bit of the file H’42’,  if it 
is 0, then skip the next line of code.

btfss 0x43,1            :  test the 1st bit of the file H’43’,  if it 
is 1, then skip the next line of code.



• Zero flag:  Z

Set to 1 if the previous operation result 
was 0

• Carry flag:  C

Set to 1 if the previous result caused a 
carry or borrow out of the 8-bit word

• Digit Carry flag: DC

Set to 1 if the previous command caused 
a half carry or borrow across bits 3 and 4.



PCLATH register

PCLATH is a special register located at 0x0A that is used by
instructions that modify the PC register.

The PC register is 13 bits so programs can be a maximum of 8K
(8192) instructions.

Instructions that affect the PC only change either the lower
8-bits or lower 11-bits; the remaining bits come from the
PCLATH register.

If your program is less than 2K (2048) instructions, then you do
not have to worry about modifying PCLATH before a goto
because the PCLATH[4:3] bits will already be ’00’.



C to PIC Assembly













Clock Cycles vs. Instruction Cycles

The clock signal used by a PIC to control instruction execution can be generated

by an off-chip oscillator, by using an external RC network to generate the clock

on-chip.

For the PIC 16F87X, the maximum clock frequency is 20 Mhz.

An instruction cycle is four clock cycles.

A PIC instruction takes 1 or 2 instruction cycles, depending on the instruction

(see Table 13-2, pg. 136, PIC 16F87X data sheet).

An add instruction takes 1 instruction cycle. How much time is this if the clock

frequency is 20 MHz ( 1 MHz = 1.0e6 = 1,000,000 Hz)?

1/frequency = period, 1/20 Mhz = 50 ns (1 ns = 1.0e-9 s)

Add instruction @ 20 Mhz takes 4 * 50 ns = 200 ns.

By comparison, a Pentium IV add instruction @ 3 Ghz takes 0.33 ns (330 ps). A

Pentium IV could emulate a PIC faster than a PIC can execute! But you can’t put a

Pentium IV in a toaster, or buy one from digi-key for $5.00.


