PIC16F877 Core Features

Accumulator Based Machine
Harvard Architecture Memory (separate program and data memory)
— 8Kx14 Flash Based Instruction Memory
— 368x8 Static Ram Based Data Memory (File Registers)
35 Instructions (fixed length encoding - 14-bit)
3 Addressing Modes (direct, indirect, relative)
8x13 Hardware Stack (8 levels - not visible from program code)
Execution Speed
— Overlapped Instruction Fetch and Instruction Execution
— 1 cycle/instruction (non-branching)
— 2 cycles/instruction (branching)
— 1 cycle period = 4/CLK_IN (ex. 20Mhz CLK_IN -> 200ns cycle period)

PIC16F877 Peripheral Features

3 Timer/counters (programmable prescalars)
— Timer0,Timer2 8-bit
— Timer1 16-bit
2 Capture/Compare/PWM modules
— Input capture function records the Timer1 count on a pin transition

— Output compare function transitions a pin when Timer1 matches a programmable
register

— Pulse width modulation function outputs a square wave with a programmable
period and duty cycle.

10-bit 8 channel analog-to-digital converter
Synchronous serial port
USART

8-bit Parallel Slave Port - function allow another processor to read from a
data buffer in the PIC.

256 bytes of EEPROM Memory

Interrupts can be generated from each of the peripherals - single vector with
a status reg.

PIC16F877 Development Tools

 MPLAB - Integrated Development
Environment

— Editor
— Build Tools (Assembler and Linker)
— Simulator

* Download for Free @ Microchip.com

Software: Programmers Model

Hardware Stack

. Stores addresses for
<= 12/14/16 bits -> A SUBTOUEines

Program Memory J

< (PCH) Program Counter-PCL

“"Burned” in by
programmer (can’t <— 8 bits -
change during

execution). Stored Status
instructions, addresses
and "“literals” Special Purpose
(numbers) . Registers

I/O pin states,
peripheral
registers, etc.

A

W “Register”

General Purpose
Registers

RAM or “data
memory”. Variables
are stored here.

Memory Organization

* Program Memory

* Register File Memory

Program Memory

Used for storing compiled code
Each location is 14 bits long
Every instruction is coded as a 14 bit word

Addresses H'000’ and H’'004’ are treated
In a special way

PC can address up to 8K addresses

Hex Program

address memory
000 goto Mainline
001
002
003
004 | goto IntService
005)
> Tables
EndofTables J
Mainline
Mainline program
> . .
and its subroutines
. <
IntService
| Interrupt service routine
and its subroutines
EndotCode J

Figure 4 Program memory map

Register File Memory

» Consist of 2 Components

»General Purpose Register (GPR) Files
(RAM)

»Special Purpose Register (SPR) files

 This portion of memory is separated into
banks of 128 bytes long

FIGURE 2-3:

PIC16F877/876 REGISTER FILE MAP

File
Address

Indirect addr.t)| ooh
TMRO 01h
PCL 02h
STATUS 03h
FSR 04h
PORTA 05h
PORTB 06h
PORTC 07h
porRTD! | 08h
PORTE!" | 09h
PCLATH DAh
INTCON OBh
PIR1 0Ch
PIR2 0Dh
TMRIL OEh
TMR1H OFh
T1CON 10h
TMR2 11h
T2CON 12h
SSPBUF 13h
SSFPCON 14h
CCPRI1L 15h
CCPR1H 16h
CCPI1CON | 17h
RCSTA 18h
TXREG 19h
RCREG 1Ah
CCPR2L 1Bh
CCPR2H 1Ch
CCP2CON | 1Dh
ADRESH 1Eh
ADCOND 1Fh
20h

General

Purpose

Register

96 Bytes
TFh

Bank 0

File
Address
Indirect addr.() a0h
OPTION_REG | 81h
PCL 82h
STATUS 83h
FSR 84h
TRISA 85h
TRISB 86h
TRISC a7h
TRISDY | aan
TRISEM | 89n
PCLATH 3Ah
INTCON 2Bh
PIE1 8Ch
PIE2 8Dh
PCON 8Eh
8Fh
90h
SSPCON2 91h
PR2 92h
SSPADD 93h
SSPSTAT 94h
95h
96h
97h
TXSTA 98h
SPBRG 99h
9Ah
9Bh
9Ch
SDh
ADRESL 9Eh
ADCON1 9Fh
AOh
General
Purpaose
Register
80 Bytes
EFh
accesses FOh
70h-7Fh
FFh
Bank 1

File
Address
Indirect addr.t)| 100n
TMRO 101h
PCL 102h
STATUS 103h
FSR 104h
105h
PORTB 106h
107h
108h
109h
PCLATH 10AR
INTCON 10Bh
EEDATA 10Ch
EEADR 10Dh
EEDATH | 10Eh
EEADRH 10Fh
110h
111h
112h
113h
114h
115h
116h
Seneral 17h
pumse | i
16 Bytes 119h
11Ah
11Bh
1MCh
11Dh
TEh
11Fh
120h
General
Purpose
Register
80 Bytes
16Fh
accesses 170h
70h-7Fh
17Fh
Bank 2

O Unimplemented data memory locations, read as '0".
* Mot a physical register.

Note 1: These registers are not implemented on the PIC16F876.
2: These registers are reserved, maintain these registers clear.

File
Address
Indirect addr.?| 130n
OPTION_REG| 181h
PCL 182h
STATUS 183h
FSR 184h
185h
TRISB 186h
187h
188h
189h
PCLATH 184Ah
INTCON 18Bh
EECON1 18Ch
EECON2 18Dh
Reserved® | 18Eh
Reserved@ 18Fh
190h
191h
192h
193h
194h
195h
196h
Sened | 1o
Register 198h
16 Bytes 199h
19Ah
19Bh
19Ch
19Dh
19Eh
19Fh
1A0h
General
Purpase
Register
80 Bytes 1EFh
accesses 1FOh
70h - 7Fh
1FFh
Bank 3

Register Addressing Modes

* There are 3 types of addressing modes In
PIC

»|mmediate Addressing
»Moviw H'OF’

»Direct Addressing
»Indirect Addressing

Direct Addressing

« Uses 7 bits of 14 bit instruction to identify
a register file address

« 8t and 9" bit comes from RP0 and RP1
bits of STATUS register.

Indirect Addressing

* Full 8 bit register address is written the
special function register FSR

* INDF is used to get the content of the
address pointed by FSR

* Exp : A sample program to clear RAM
locations H'20" — H'2F" .

» for instance,
— gge general purpose register (GPR) at address OFh contains a value of

— By writing a value of OFh in FSR register we will get a register indicator
at address OFh,

— and by reading from INDF register, we will get a value of 20, which
means that we have read from the first register its value without
accessing it directly (but via FSR and INDF).

« It appears that this type of addressing does not have any
advantages over direct addressing, but certain needs do exist during
programming which can be solved smoothly only through indirect
addressing.

- Indirect addressing is very convenient for manipulating data arrays
located in GPR registers.
— In this case, it is necessary to initialize FSR register with a starting

address of the array, and the rest of the data can be accessed by
incrementing the FSR register.

IicA c

Address Content

00 5

=

A4

g

m

Byte-oriented or bit-oriented instruction
13 6 0
LLI[[]]1 [ofoJo]ofojolo
address of INDF 7F
says to use FSR as a pointer 80 -

FsR [1[o]o]1[o[1]o]o] — ——94 1z

9 4 hex

I_ Access to anywhere in
entire file address space

Bank 1

o]
'

igure 7 [Indirect addressing mode.

Software: Programmers Model

Hardware Stack

. Stores addresses for
<= 12/14/16 bits -> A SUBTOUEines

Program Memory J

< (PCH) Program Counter-PCL

“"Burned” in by
programmer (can’t <— 8 bits -
change during

execution). Stored Status
instructions, addresses
and "“literals” Special Purpose
(numbers) . Registers

I/O pin states,
peripheral
registers, etc.

A

W “Register”

General Purpose
Registers

RAM or “data
memory”. Variables
are stored here.

Some CPU Registers

STATUS
PC

W

PCL
PCLATH

STATUS

FSR

INDF

PCLATH (address H'0A', H'8A")

Working register

(address H'03', H'83")

RPO Register bank select bit
NOT_TO Reset status bit
NOT_PD Reset status bit

zZ Zero bit
DC Digit carry/borrow bit
C Carry/borrow bit

(address H'04', H'84")

Indirect data memory address pointer

(address H'00', H'80")
Accessing INDF accesses the
location pointed to by FSR

Transferred by a —""——

write to PCL
12

.
~

==

7

-

(=}

Program counter

PCL

Eight-level stack

igure

(address H'02", H'82")

12

8 CPU registers.

the accumulator

Program Counter =)
Memory e together
Registers — first move the
: contents of one file
ETETEIRE S reqister into the w
\L____Address Bus 2 g
z reqgister
Instruction
— then add the

Decode &
Control = contents of the

ALU second file register

A tO w
w — the result can be

written to w or to the
second file register

_ PICmicro® MCU Processor with “w” register as an “accumulator”

the status regqister

Program
Memory

—Program Counter i

3

Instruction Reg_

File

Registers

)

sng ereq

u Address Bus
Instruction Status
Decode &
Control —n (
ALU
w

:JJ

« the STATUS
register stores
‘results’ of the
operation

» three of the bits of
the STATUS
register are set
based on the result
of an arithmetic or
bitwise operation

status register

* three of the bits of the STATUS register are set
based on the result of an arithmetic or bitwise
operation

— zero flag ; this bit is set whenever the result of an
operation is zero

— carry flag ; this bit is set whenever the result of an
operation is greater than 255 (OxFF) ; can be used to
iIndicate that higher order bytes need to be updated

— digit carry flag ; this bit is set whenever the least
significant four bits of the result of an operation is
greater than 15 (OxOF)

programming

 there are only 35 instructions

Instructions

Data Movement

— movf,moviw,movwf

Arithmetic

— addlw,addwf,sublw,subwf,incf,decf
Logical

— andlw,andwf,iorlw,iorwf,xorlw,xorwf rrf rlf,clrf,clrw,swapf,comf
Bit Operators

— bsf,bcf

Branching

— goto,btfss,btfsc,decfsz,incfsz
Subroutine

— call,return,retlw,retfie

Misc.

— sleep,clrwdt,nop

Instruction Set

» Every Instruction is coded in a 14 bit word

* Each instruction takes one cycle to
execute

* Only 35 instructions to learn (RISC)

Instruction Set

« Uses 7 bits of 14 bit instruction to identify
register file address

* For most instructions, W register is used
as a source register

* The result of an operation can be stored
back to the W register or back to source
register

hAne maric Descrption Ciperation | Cycke | Moles

Data transfer

I Ly Meve constant 1o o= Ay 1

R hdonee W ig o W f 1

W hdowve | F—+d 1 1.2

CLRWY Clear Wy 0w 1

CLRF Clgar 1 0=F] 5

S PF Swvap nibbles in f 1740, (300 = 300,074 1 1.2
Arritmetic and logic

ADDLw Aded constart ardd W Wie] = 1

A CCE e Vol anct f Wf—+ 4 1 1.2

SUBLW Subtract VW rom constant Wk — W 1

SLIEE Suabtract WV from Wi d 1 1.2

ApDLVY ARD constart with W WAND k—"W Z 1

AMCAF ARD VY etk t WEAMD = d Z 1 1,2

IR O constard with W WOR kW < 1

[DRWE OFR A wvith WORf—d il 1 1,2

KORLW k Exchuzres OF constan with iy VRO k= W T 1 1.2

ORI fd Evwcluzive R W with 1 WEORf~d I 1

IMCF f o Ircrement f 11 Z 1 1.2

DECF f,d [Cecrament fl=1 Z 1 1.2

RLF f,d Rotate Left firough carry e EEOE I It 1 12

RRF t.d | Fotate Figni T irough carry T EEEEEI Tl < 1 1,2

COMF f,d Complement f F>d I 1 1.2
Bit operations

BiCF B Clesr 1 0 =+ {b) 1 1,2

B=F B Zet f | = i) 1 1.2
Directing a program flow

BTFSC B Test 1, Skipif Clear rurnp A {Th=0 1021 3

BTF== Bit Test f, Skip if Set iurnp dih=1 102] 3

DECF=Z Decrement 1, Skiga if F-1 = 4, jump if £=1 102 1,23

IMCFSE Ingrement 1, Skip it 0 f+1 = d punp UZ=0 1(2) 1.23

GOTD Goto address WAND k=W o

CALL Call sulroutine WANDI—d 2

RETLIRIY Feeturn from Subrouting WOR k- W 2

RETLW Return with constant in W WORf—+d >

RETFIE Fedurn Trom nterrupt WHOR k= W =
Oiher instructions

MOP Mo Operation 1

CLRWDT Clear Wtehdog Timer 0= WDT,+TO, 1= PD TO.FD | 1

SLEER o into standhy mode 0 —=+WDT, HTo,0-+ FD ToOFD | 1

14-Bit Opcode

Mnemonic, .- Status
Description Cycles Notes
Operands MSb LSb Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF f, d Add W and f 1 00 0111 d4fff ffff| CDC/Z 1,2
ANDWF f, d AND W with f 1 00 0101 dfff ffff Z 1,2
CLRF f Clear f 1 00 0001 1fff ffff Z 2
CLRW - Clear W 1 00 0001 OxXXX XXXX Z
COMF f, d Complement f 1 00 1001 dfff ffff Z 1,2
DECF f d Decrement f 1 00 0011 dfff ffff Z 1,2
DECFSZ f, d Decrement f, Skip if 0 1(2) 00 1011 dfff ffff 1,2,3
INCF f, d Increment f 1 00 1010 dfff ffff Z 1,2
INCFSZ f, d Increment f, Skip if O 1(2) 00 1111 dfff ffff 1,2,3
IORWF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z 1,2
MOVF f, d Move f 1 00 1000 dfff ffff Z 1,2
MOVWF f Move W to f 1 00 0000 1fff ffff
NOP - No Operation 1 00 0000 0xx0 0000
RLF f, d Rotate Left f through Carry 1 00 1101 dfff ffff C 1,2
RRF f, d Rotate Right f through Carry 1 00 1100 dfff ffff C 1,2
SUBWF f, d Subtract W from f 1 00 0010 dfff ffff| CDCZ 1,2
SWAPF f d Swap nibbles in f 1 00 1110 dfff ffff 1,2
XORWF f, d Exclusive OR W with f 1 00 0110 dfff ffff Z 1,2

For byte-oriented instructions, '’ represents a file register designator and 'd’

represents a destination designator. The file register designator specifies which file
register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If
'd’ is zero, the result is placed in the W register. If ’d’ is one, the result is placed

in the file register specified in the instruction

Mnemonic, L. 14-Bit Opcode Status
Description Cycles Notes
Operands MSb Lsp | Affected
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f,b Bit Clear f 1 01 00bb bfff ffff 1,2
BSF f.b Bit Set f 1 01 01bb bfff ffff 1,2
BTFSC f,b Bit Test f, Skip if Clear 1(2) 01 10bb bfff ffff 3
BTFSS f,b Bit Test f, Skip if Set 1(2) 01 11bb bfff ffff 3
LITERAL AND CONTROL OPERATIONS

ADDLW k Add literal and W 1 11 111x kkkk kkkk| C,DC,Z
ANDLW k AND literal with W 1 11 1001 kkkk kkkk Z
CALL Kk Call subroutine 2 10 Okkk kkkk kkkk|
CLRWDT - Clear Watchdog Timer 1 00 0000 0110 o0100| TO,PD
GOTO k Go to address 2 10 1kkk kkkk kkkk
IORLW k Inclusive OR literal with W 1 11 1000 Kkkkk kkkk Z
MOVLW k Move literal to W 1 11 00xx kkkk kkkk
RETFIE - Return from interrupt 2 00 0000 0000 1001
RETLW Kk Return with literal in W 2 11 01xx kkkk kkkk
RETURN - Return from Subroutine 2 00 0000 0000 1000
SLEEP - Go into standby mode 1 00 0000 0110 0011| TOPD
SUBLW K Subtract W from literal 1 11 110x kkkk kkkk| C,DC/Z
XORLW K Exclusive OR literal with W 1 11 1010 kkkk kkkk Z

For bit-oriented instructions, ‘b’ represents a bit field designator which selects the
number of the bit affected by the operation, while ’f’' represents the address of the
file in which the bit is located.

For literal and control operations, ’k’ represents an eight or eleven bit constant or
literal value.

Byte-oriented file register operations

13 8 7 ©

OPCODE d

f (FILE #)

d = 0 for destination W
d = 1 for destination f
f = 7-bit file register address

Bit-oriented file register operations
13 10 9 7 6

OPCODE b (BIT #)

f (FILE #)

bit bit address

b=
f = 7-bit file register address

3-
7-
Literal and control operations

General
13 8 7

OPCODE

k (literal)

k = 8-bit immediate value

CALL and GOTO instructions only
13 11 10

OPCODE k (literal)

k = 11-bit immediate value

addwf instruction

General form:
addwf floc, d d— [floc] + w
floc is a memory location in the file registers (data memory)
w IS the working register
d is the destination, can either be the literal ‘f’ or ‘w’
[floc] means “the contents of memory location floc”
addwf 0x70,w w «— [0x70] + w
addwf 0x70,f [0x70] « [0x70] + w

Move Commands:

moviw OxF2

movwf 0x0C

movf OxOC,w
register

movf OxO0C.f

. stores the number 0xF2 into the W register

. stores the W register contents into file H'0C

. loads the contents of file H'OC’ into W

. loads the contents of file H'OC’ into file
HOC’

Bit Set/Clear Commands

bcf 0x0C,0 . clear the 0th bit of file H'OC’

bsf 0x0D,3 . set the 3rd bit of file HOD’

btfsc 0x42,0 . test the Oth bit of the file H'42', if it
Is 0, then skip the next line of code.

btfss 0x43,1 . test the 1st bit of the file H'43’, if it

Is 1, then skip the next line of code.

« Zero flag: Z

Set to 1 if the previous operation result
was 0

« Carry flag: C

Set to 1 if the previous result caused a
carry or borrow out of the 8-bit word

 Digit Carry flag: DC
Set to 1 if the previous command caused
a half carry or borrow across bits 3 and 4.

PCLATH register

PCLATH is a special register located at 0xOA that is used by
instructions that modify the PC register.

The PC register is 13 bits so programs can be a maximum of 8K
(8192) instructions.

Instructions that affect the PC only change either the lower
8-bits or lower 11-bits; the remaining bits come from the
PCLATH register.

If your program is less than 2K (2048) instructions, then you do
not have to worry about modifying PCLATH before a goto
because the PCLATH[4:3] bits will already be ’00'.

C to PIC Assembly

movliw 0x64

= 100; incft Dx20,f

= i + l;/ movt 0x20,w

= 1;

‘#ﬂﬂﬂ,ﬂﬂﬂr decft 0x21,f

=j—l;

_ _ movE 0x20,w
=3+ 1 —» | addwf 0x21,w
movwf O0x22

INCLUDE "pl6f873.inc"

; Reglster Usage

CBLOCK 0x020 ; ﬂ”lpl est.asm

i, J,k ; reserve space

ENDC

myid equ D'100' ; define myid label This file can be

org 0 assembled by

movlw myid ; w <- 100 . .

movwf i C <= w MPLAB into PIC
machine code and

incf i, f ; i <-1+1 .
simulated.

movf i,w ;oW <- 1

movwf J ;3 <-w [Labels used for

memory locations
0x20 (1), 0x21()).
0x22(k) to increase

decf j, £ ;] <-3 -1

movf i,w ;ow <- I :
addwf §,w ;W <- W + 5 code clarity
movwE k ; k <- w

here
goto here ; loop forever

end V0.4

Include file that defines

mp IST.asm (COIlt.) various labels for a
particular processor. This

INCLUDE "pl6£873.inc" € 1s an assembler directive,
do not start in column 1.
Only labels start in column

L.

. Register Usage An assembler d;recm?e t(lllat
CBLOCK 0x020 ; reserves space for name B
. variables starting at the specified
i, j,k ; reserve space locat; . g p
] A0 OIS) eserv
ENDC location. Lc cations me: reserve
in sequential order, so 7 assigned
0x20, j to 0x21, etc. Use these

variable names 1nstead of

An assembler directive 1s
not a PIC instruction, but an
instruction to the assembler
program.

absolute memory locations.

mptst.asm (cont.

myid equ D'100' +— [|An assembler directive that
equates alabel to a value. The
D’100° specifies a decimal 100.

Could have also done:
myid equ .100
my1d equ 0x64
my1id equ H’64°

An assembler directive that specifies the
starting location (origin) of the code after this
statement. This places the code beginning at
location 0x0000 1n program memory. There
must always be valid code at location 0 since
the first instruction 1s fetched from here.

org 0 €+—

mpist.asm (cont.)

;1=

;1= i+1;
"
inct i, £ r 1 <- i + 1:
(e T
;) =1
movf i,w oW <=1
movwf ;) <- w

The use of labels and
comments greatly
improves the clarity of the
program.

It 1s hard to over-comment
an assembly language
program 1f you want to be
able to understand 1t later.

Strive for at least a
comment every other line;
refer to lines

mpist.asm (COﬂt.) A label that 1s the target
of a goto mstruction.
Labels must start in

<« |
12 column 1, and are case
goto here ; loop forever . : :
sensitive (1nstruction
mnemonics are not case
sensitive.
end

A comment

N

An assembler directive specifying the end of
the program. All assembly language
programs must have an end statement.

Clock Cycles vs. Instruction Cycles

The clock signal used by a PIC to control instruction execution can be generated
by an off-chip oscillator, by using an external RC network to generate the clock
on-chip.

For the PIC 16F87X, the maximum clock frequency is 20 Mhz.

An instruction cycle is four clock cycles.

A PIC instruction takes 1 or 2 instruction cycles, depending on the instruction
(see Table 13-2, pg. 136, PIC 16F87X data sheet).

An add instruction takes 1 instruction cycle. How much time is this if the clock
frequency is 20 MHz (1 MHz = 1.0e6 = 1,000,000 Hz)?

1/frequency = period, 1/20 Mhz = 50 ns (1 ns = 1.0e-9 s)

Add instruction @ 20 Mhz takes 4 * 50 ns = 200 ns.

By comparison, a Pentium |V add instruction @ 3 Ghz takes 0.33 ns (330 ps). A
Pentium IV could emulate a PIC faster than a PIC can execute! But you can'’t put a
Pentium IV in a toaster, or buy one from digi-key for $5.00.

