CENG 336 Introduction to Embedded Systems Development

Lecture 1: An Introduction to Computers and Embedded Systems

Course Schedule

• Lecture:

- Section 1: Volkan Atalay Tue 10:40 BMB2
- Section 2: Ali Doğru

Tue 10:40 BMB2 Tue 10:40 BMB3 Thu 10:40,11:40 BMB1 Thu 10:40,11:40 BMB2

• Lab:

- To be announced
- TAs:Alper Kilic <u>akilic@ceng.metu.edu.tr</u>, Fatih Gokce fgokce@ceng.metu.edu.tr

• Text Book

No Textbook

• Referece Material

- PIC 16F87X Data sheets (http://www.microchip.com)
- Design with PIC Microcontrollers, John B. Peatman, Prentice Hall, 1998.

• Course webpage:

- http://http://www.ceng.metu.edu.tr/courses/ceng336/

CENG336 Introduction

METU

Grading Policy (tentative)

MIDTERM	QUIZES	FINAL	LAB
25%	15%	35%	35%

What is this course about?

CENG 336 Introduction to Embedded Systems Development (2-2)3

Assembly language and controller architecture. Peripheral interfaces: A/D and D/A conversion, parallel and serial ports, interrupts and timers/counters. I/O bus architectures. Sensors and actuators. Design and analysis techniques. Real time operating systems.

Prerequisite: CENG 232.

http://catalog.metu.edu.tr/ceng.php#desc

CENG336 Introduction

What is an embedded computer system?

• What is a computer?

- [Merriam-Webster Dictionary] one that computes; *specifically* : a programmable electronic device that can store, retrieve, and process data.
- Classification of Computers

– by price and computing power

- Dedicated controllers Embedded controllers
- Personal computers
- Mainframes
- Supercomputers

Types of Computers

- Mainframes
 - largest and most powerful
 - massive amounts of memory
 - use large data words...64 bits or greater
 - mostly used for military defense and large business data processing
 - examples: IBM 4381, Honeywell DPS8

- Microcomputers
 - range from small controllers that work with 4 bit words to the PCs we are familiar with that work with 32 bit words
 - modern microcomputers are becoming indistinguishable from early minicomputers...functionally speaking
 - large variety of uses from specialized controls like a printer to personal publishing
 - the CPU is usually 1 Integrated Circuit (IC) called a microprocessor
 - examples: Intel 8051 controller chip, IBM PC, Apple Macintosh
- Supercomputers
 - fastest and most powerful mainframes
 - contains multiple central processors
 - used for scientific applications, and number crunching
 - now have teraflop performance

- Types of Computers
- Microcomputer Structure
- Microprocessor Evolution
- Internal Architecture
- Introduction to Programming the 8086

Microcomputer Structure

- Central Processing Unit (CPU)
- Memory
- Input/Output (I/O) circuitry
- Buses
 - Address bus
 - Data bus
 - Control bus

Memory

- A mixture of RAM and ROM...may also include magnetic hard disks and optical disks
- 2 purposes of memory
 - store the binary codes for the sequence of instructions specified by programs
 - store binary data that the computer needs to execute instructions

I/O

- the way the computer communicates with the outside world
- peripherals are connected to the I/O ports
 - printers, modems, keyboard, mouse, scanner
 - Universal Serial Bus (USB)
- ports
 - physical devices needed to interface with the computer's internal buses
 - actually a set of D flip-flops connected in parallel
 - how do we distinguish between an input port and an output port?

CPU

- the "brains" of the computer
- its job is to fetch instructions, decode them, and then execute them
- contains:
 - an Instruction Pointer register which contains the address of the next instruction
 - general purpose registers for temporary storage
 - circuitry to generate signals to the control bus

Address bus

- consists of 16,20, 24, or 32 parallel signal lines (wires)
 - these lines contain the address of the memory location to read or written
 - just how many unique addresses can an address bus specify?

Data bus

- consists of 8,16, or 32 parallel signal lines
 - these are bi-directional... meaning that data can be read from/written to either memory or a port
 - only one device at a time can have its outputs enabled, even though many will have their outputs connected to the same data bus
 - this requires the devices to have three-state output

Control bus

- consists of 4 to 10 parallel signal lines
- CPU sends signals along these lines to memory and to I/O ports
 - examples: Memory Read, Memory Write, I/O Read, I/O Write

Typical CPU Behavior

Goal:

- Read a word of data from a memory location

Process:

- CPU first sends out the address along the address bus to the memory device
- CPU then sends the Memory Read signal along the control bus
- the output from the memory device travels back to the CPU along the data bus

- Types of Computers
- Microcomputer Structure
- Microprocessor Evolution
- Internal Architecture
- Introduction to Programming the 8086

<u>history</u>

Microprocessor Evolution

- microcomputers are commonly categorized by the number of bits that their ALU can work with at a time
 - regardless of the number of address lines or data lines
 - the first commercial microprocessor was the Intel 4004...a 4bit device combined with other devices to make a calculator
 - next came the Intel 8008...an 8-bit device, but it required many additional devices to be a functional CPU
 - Intel 8080...another 8-bit device, but it only required 2 additional devices
 - it also used different transistors making it much faster, and started the 2nd generation of microprocessors
 - then Motorola entered the market with the MC6800

Directions taken by Microprocessors

- Embedded controllers
 - used to control smart machines
 - printers, auto braking systems
 - also called microcontrollers
- Bit-slice processors
 - custom-designed hardware and custom-designed instruction set made by connecting devices...each part becomes a slice needed for a specific application
 - these were created because general-purpose CPUs were not fast enough or did not have a rich enough instruction set

General Purpose CPUs

- Intel released the 8086, a 16-bit microprocessor, in 1978
- Motorola followed with the MC68000 as their 16-bit processor
- the 16-bit processor works with 16 bit words, rather than 8 bit words...
 - instructions are executed faster
 - provide single instructions for more complex instructions...multiply and divide

32 bit Processors

- 16 bit processors evolved into 32 bit processors
 - now able to work with gigabytes (10⁹ bytes) and terabytes (10¹² bytes)
 - Intel released the 80386
 - Motorola released the MC68020

The 8086 Microprocessor Family

- Characteristics
 - 16 bit microprocessor
 - 16 bit data bus
 - it can read from or write to memory and I/O ports either 8 or 16 bits at a time
 - 20 bit address bus
 - it can address 2²⁰ memory locations
 - each location is 1 byte (8 bits) wide, thus 16 bit words will require consecutive memory locations

Members of this family

- 8088
 - same as 8086 but has an 8 bit data bus
- 80186/80188
 - enhanced instruction set...but still backwards compatible
- 80286
 - designed for a multi-user, multi-tasking microcomputer
 - users a virtual address mode to prevent collision of users' programs
- 80386/80486
 - first Intel 32 bit processor
 - can directly address up to 4 GB of memory

Intel 80x86

Story of the Humble Transistor

- 1947 Shockley, Brattain, and Bardeen invented the transistor at Bell Labs
- 1961 First commercial IC by Fairchild/TI
- 1963 CMOS invented
- 1965 Moore's law
- 1968 State of the art: 64 transistor chip
- 1978 IA 8086: ~10K transistors
- 1986 IA 386: ~100K transistors
- 1990 IA 486: ~1 M transistors
- 1998 IA P2: ~ 10 M transistors
- 2004 IA P6: ~ 1 B transistors

Moore's Law

CENG336 Introduction

METU

Embedded System = *Computers Inside a Product*

Definition

- Embedded system: any device that includes a programmable computer but is not itself a general-purpose computer.
- Computer purchased as part of some other piece of equipment
 - Typically dedicated software (may be user- customizable)
 - Often replaces previously electromechanical components
 - Often no "real" keyboard
 - Often limited display or no general- purpose display device: don't need all the general-purpose bells and whistles.

Embedded systems: Applications

- Consumer segment, e.g. cameras, camcorders, VCRs, washers, microwave ovens, ...
- Automobiles, e.g., engine control, anti-lock brake, air bags, ...
- Office automation, e.g., copiers, printers, FAX machines, ...
- Telecommunications, e.g.,, cellular phones, PDAs, interactive game boxes, answering machines, ...
- Other industrial products, e.g., door locks in hotel rooms, automatic faucets, ...

Embedded Systems: Typical Characteristics

- Perform a single or tightly knit set of functions (not usually "general purpose")
- Is part of a larger system that may not be a "computer"
- Works in a reactive and time-constrained environment
- Employs a combination of hardware & Software
 - Software provides features and flexibility
 - Hardware provides performance (Application specific processor design)

What makes an embedded system unique? – Hardware perspective

- Microprocessor technology
 - Personal computers
 - Pentium Chips, Power-PC chips
 - General purpose computers, raw computing power
 - 75 million units per year
 - Embedded controllers
 - Special purpose microcontrollers
 - 2.5 billion units per year, 30 times larger in unit volume

- GartnerGroupestimates 70 Billion μP used in embedded systems in 2001
- Other estimates say 50 to 120 Billion μP
- Average embedded system has 4 μP
- Of all µP sold, 90% go into "noncomputers", 10% in "computers"
- You will most likely end up working with a "non-computer" at some point in your career

What makes an embedded system unique? – Software perspective

- No operating systems
- Execute a single program, tailored exactly to the controller hardware
- Assembly language (vs. High-level language)
 - Not transportable, machine specific
 - Programmer need to know CPU architecture
 - Speed
 - Program size
 - Uniqueness

An embedded system example -a digital camera

- Single-functioned -- always a digital camera
- Tightly-constrained -- Low cost, low power, small, fast
- Reactive and real-time -- only to a small extent

BMW 850i brake and stability control system

- Anti-lock brake system (ABS): pumps brakes to reduce skidding.
- Automatic stability control (ASC+T): controls engine to improve stability.
- ABS and ASC+T communicate.
 - ABS was introduced first---needed to interface to existing ABS module.

BMW 850i, cont'd.

35

Example: BMW 745i

- 2,000,000 LOC
- Windows CE OS
- 53 8-bit µP
- 11 32-bit µP
- 7 16-bit µP
- Multiple Networks
- Buggy!

Components of Embedded Systems

- Analog Components
- Sensors, Actuators, Controllers, ...
- Digital Components
- Processor, Coprocessors
- Memories
- Controllers, Buses
- Application Specific Integrated Circuits (ASIC)
- Converters –A2D, D2A, ...
- Software
- Application Programs
- Exception Handlers

Characteristics

Application Specific

- Applications are known a priori
- Optimize for cost, area, power, and performance

Digital Signal Processing

- Signals are represented digitally
- Reactive
 - Reacts to changes in the system's environment

• Real-time

- Compute certain tasks before deadline
- Distributed, Networked, ...

• Reliability

 Probability of system working correctly provided that is was working at *t*=0

• Maintainability

- Probability of system working correctly *d*time units after error occurred.
- Safety
 - Not harmful for user
- Security
 - Confidential and authentic communication

Traditional Design Challenges

- Low cost
- Light weight
- Reliability
- Low power
- Portable
- Complexity
- Ease of use

Mixed digital/analog requirements
Shrinking time-to-market
Short product lifetime
Real-time processing
Inherent concurrency
HW/SW co-design

Recent Design Challenges

- Design Complexity
- Ultra low power
 - Highly adaptive
 - Active power management (voltage scaling, etc.)
 - Alternative energy source (scavenge, solar, etc.)
- Internet aware
 - Incorporate RF technologies
 - Networking capabilities
- Verification
- Security

Processor technology

- The architecture of the computation engine used to implement a system's desired functionality
- Processor does not have to be programmable
 - "Processor" *not* equal to general-purpose processor

CENG336 Introduction

METU

General-purpose processors

- Programmable device used in a variety of applications
 - Also known as "microprocessor"
- Features
 - Program memory
 - General datapath with large register file and general ALU
- User benefits
 - Low time-to-market and NRE costs
 - High flexibility
- "Pentium" the most well-known, but there are hundreds of others

Single-purpose processors

- Digital circuit designed to execute exactly one program
 - a.k.a. coprocessor, accelerator or peripheral
- Features
 - Contains only the components needed to execute a single program
 - No program memory
- Benefits
 - Fast
 - Low power
 - Small size

Application-specific processors

- Programmable processor optimized for a particular class of applications having common characteristics
 - Compromise between general-purpose and single-purpose processors
- Features
 - Program memory
 - Optimized datapath
 - Special functional units
- Benefits
 - Some flexibility, good performance, size and power

CENG336 Introduction

• Applications