
TIMERS

Definitions

• A counter counts (possibly asynchronous)
input pulses from an external signal

• A timer counts pulses of a fixed, known
frequency usually the system clock for the
processor

Timers/Event Counters

III-65

Uses of Programmable Timers and Event Counters

1. Generate real-time interrupts

2. Output precisely timed signals

3. Programmable baud rate generator

4. Measure time between events

5. Count external events

6. Generate event caused interrupts

Timer applications

– Frequency measurement

– Waveform generation (e.g. sound)

– time base (multi task system, sampling

system, ...)

• Physically, timer is a register whose value
is continually increasing to 255, and then it
starts all over again: 0, 1, 2, 3,
4...255....0,1, 2, 3......etc.

Timer (8253 used in PC)

• Three identical timer elements

– Actually they are counters of
the clock

– Inputs are clock and gate

– Output

• Changes or pulses when
counting cycle is complete

– Modes

• Interrupt on countdown

• One-shot

• Pulse rate generator

• Square-wave generator

• Software-triggered strobe

• Hardware-triggered strobe

Timer 0Timer 0Timer 0Timer 0

Timer 1Timer 1Timer 1Timer 1

Timer 2Timer 2Timer 2Timer 2

clockclockclockclock

gategategategate
outputoutputoutputoutput

gategategategate
outputoutputoutputoutput

clockclockclockclock

clockclockclockclock

gategategategate
outputoutputoutputoutput

RegistersRegistersRegistersRegisters

0 0 0 0 ---- Counter 0Counter 0Counter 0Counter 0

1 1 1 1 ---- Counter 1Counter 1Counter 1Counter 1

2 2 2 2 ---- Counter 2Counter 2Counter 2Counter 2

3 3 3 3 ---- Control for allControl for allControl for allControl for all

Common timer applications

• Combinations of
connection and mode

– Examples

• Internal speaker

• periodic interrupt using

countdown from system

clock and square-wave

mode

• counter input controls

frequency

• 18HZ interrupt

• 4.77 MHz clock counted

down by 12, then by 64K

• pulse-rate generator mode

ClkClkClkClk –––– constant rateconstant rateconstant rateconstant rate

Gate Gate Gate Gate ---- eventeventeventevent

Out Out Out Out –––– to IRQto IRQto IRQto IRQ

ClkClkClkClk ---- eventeventeventevent

Gate Gate Gate Gate ---- onononon

Out Out Out Out ---- ignoredignoredignoredignored

ClkClkClkClk –––– constant rateconstant rateconstant rateconstant rate

Gate Gate Gate Gate ---- onononon

Out Out Out Out –––– to IRQto IRQto IRQto IRQ

Time interval measurementTime interval measurementTime interval measurementTime interval measurement

Event counterEvent counterEvent counterEvent counter

Delay or periodic interruptDelay or periodic interruptDelay or periodic interruptDelay or periodic interrupt

• This incrementing is done in the background of
everything a microcontroller does.

• It is up to programmer to think up a way how he
will take advantage of this characteristic for his
needs.

• One of the ways is increasing some variable on
each timer overflow.
– If we know how much time a timer needs to make one

complete round, then multiplying the value of a
variable by that time will yield the total amount of
elapsed time.

PIC Timers

• Available in all PICs

• may generate interrupts on timer overflow

• Some 8 bits some 16 bits some have
prescalers

• Some can connect to external clock, some
to the processor clock, some to either.

• Read/write a number as the current count
is possible for some.

PIC Timers

• Can use external pin as clock in / clock out
(i.e. for counting events)

• Warning: Some Peripherals shares timer
resources.

PIC Timers

• The device has three readable and
writeable hardware timers that can
increment automatically each instruction
cycle (if no prescaler is used).

• All timers can cause an interrupt on
overflow, and then restart from zero.

PIC Timers

• Timer 0

timer/counter with prescale

• Timer 1

timer/counter with prescale

• Timer 2

timer only with prescale and postscale

• Watch Dog Timer (discussed later)

Timers

• TIMER0 is an 8-bit timer with an eight bit prescaler,
which can make the timer run 2 to 256 times slower
than normal

• TIMER1 is a 16-bit timer (two 8-bit registers) with a
1:1 to 1:8 prescaler and some other features. Used
by given C code to generate soft timer and sound

• TIMER2 is an 8-bit timer with 1:1 to 1:16 prescaler
and a 1:1 to 1:16 postscaler It also has a period
register.Used by given C code for PWM motor
control

Timer 0

• 8 bit timer/counter with prescaler

• Readable and writeable

• 8-bit software programmable prescaler

• Internal or external clock set

• Interrupt on overflow from 0xFF to 0x00

• Edge Select for external clock

Prescaler

• Prescaler is a name for the part of a
microcontroller which divides oscillator clock
before it will reach logic that increases timer
status.

• Number which divides a clock is defined through
first three bits in OPTION register.

• The highest divisor is 256. This actually means
that only at every 256th clock, timer value would
increase by one.

• This provides us with the ability to measure
longer timer periods.

PreScaler

÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2 ÷2

f f/2 f/4 f/8 f/16 f/32 f/64 f/128 f/256

8 input to 1 output multiplexer
Selects one of the inputs to connect to output

Prescaler output

PS2, PS1, PS0 : PreScaler select inputs:
Binary number on these 3 bits determine which input (0..7) to be selected

Note: if prescaler is disabled, input (f) is directly connected to the counter

Input 0 Input 7

Input clock with

frequency: f

• After each count up to 255, timer resets its value
to zero and starts with a new cycle of counting to
255.

• During each transition from 255 to zero, T0IF bit
in INTCON register is set.
– If interrupts are allowed to occur, this can be taken

advantage of in generating interrupts and in
processing interrupt routine.

– It is up to programmer to reset T0IF bit in interrupt
routine, so that new interrupt, or new overflow could
be detected.

• The timer is controlled by a number of bits
in the Option Register.

Option Register

• The option register is used to control a number
of processor features.

• The least significant six bits of the option register
control the timer logic.

• The OPTION_REG register is a readable and
writable register which contains various control
bits to configure
– the TMR0/WDT prescaler,

– the External INT Interrupt,
– TMR0, and

– the weak pull-ups on PORTB.

• Beside the internal oscillator clock, timer
status can also be increased by the
external clock on RA4/T0CKI pin.

– Choosing one of these two options is done in

OPTION register through T0CS bit.

– If this option of external clock was selected, it

would be possible to define the edge of a

signal (rising or falling), on which timer would

increase its value.

Example

• In practice, one of the typical example that is solved via external
clock and a timer is counting full turns of an axis of some production
machine, like transformer winder for instance.

• Let's wind four metal screws on the axis of a winder. These four
screws will represent metal convexity.

• Let's place now the inductive sensor at a distance of 5mm from the
head of a screw.

• Inductive sensor will generate the falling signal every time the head
of the screw is parallel with sensor head.

• Each signal will represent one fourth of a full turn, and the sum of all
full turns will be found in TMR0 timer.

• Program can easily read this data from the timer through a data bus.

how to initialize timer to signal falling edges

from external clock source with a prescaler

• Prescaler can be assigned either timer TMR0 or a
watchdog.
– Watchdog is a mechanism which microcontroller uses to defend

itself against programs getting stuck.

• Prescaler is accorded to timer TMR0, or to watchdog
timer trough PSA bit in OPTION register.
– By clearing PSA bit, prescaler will be accorded to timer TMR0.

When prescaler is accorded to timer TMR0, all instructions of
writing to TMR0 register (CLRF TMR0, MOVWF TMR0, BSF
TMR0,...) will clear prescaler.

– Prescaler change is completely under programmer's control, and
can be changed while program is running.

PIC Timers / Timer 1

• 16-bit timer/counter with prescaler

• Readable and writeable

• 1, 2, 4, 8 programmable prescaler

• Internal or external clock select

• External clock can be syn. or asyn.

• Interrupt on overflow

• Second crystal permitted

PIC Timers / Timer 2

• 8-bit timer/counter with prescaler and
postscaler

• Readable and writeable

• 1,4 or 16 programmable prescaler

• 4-bit programmable postscaler

• Interrupt on overflow

• Output to port pin

Selecting Parameters

• In order to set up the timer, it is necessary to first decide
the time interval needed.

• The basic timer rate is one microsecond (with a 4 MHz
crystal).

• This one microsecond clock is divided by the prescaler,
which can be set to divide by 2, 4, 8, 16, 32, 64, 128 or
256.

• The timer register itself has 8 bits, so it can count to 256.

• Thus, it is necessary to service the timer with software at
least every 256*256 microseconds, or 65.536
microseconds (assuming a 4 MHz clock).

Setting up the Timer

• To set up the timer, one must first disable
interrupts so that an interrupt doesn’t
occur when the timer expires.

• Then, enable the timer and assign the
prescaler to the timer.

• Establish the prescaler value, and finally,
load the timer register.

Setting up the Timer

• Whenever the timer expires, the T0IF bit in
the INTCON register will be set.

• We must clear this bit, reload the timer
register, and then execute the code that is
to be done at this time.

• In code, the setup portion might look something
like:

banksel INTCON

bcf INTCON,T0IE ; Mask timer interrupt

banksel OPTION_REG

bcf OPTION_REG,T0CS ; Enable timer

bcf OPTION_REG,PSA ; Prescaler to timer

bcf OPTION_REG,PS2 ; \

bsf OPTION_REG,PS1 ; >- 1:16 prescale

bsf OPTION_REG,PS0 ; /

movlw D’100’ ; Timer will count

movwf TMR0 ; 156 (256-100) counts

Timer0 Initialization

(Internal Clock Source)
CLRF TMR0 ; Clear Timer0 register

CLRF INTCON ; Disable interrupts and clear T0IF

BSF STATUS, RP0 ; Bank1

MOVLW 0xC3 ; PortB pull-ups are disabled,

MOVWF OPTION_REG ; Interrupt on rising edge of RB0

; Timer0 increment from internal clock

; with a prescaler of 1:16.

BCF STATUS, RP0 ; Bank0

;** BSF INTCON, T0IE ; Enable TMR0 interrupt

;** BSF INTCON, GIE ; Enable all interrupts

;

; The TMR0 interrupt is disabled, do polling on the overflow bit

;

T0_OVFL_WAIT

BTFSS INTCON, T0IF

GOTO T0_OVFL_WAIT

; Timer has overflowed

Watchdog Timers

• Watchdog timers are used to guard a
system against lock-up due to software
errors or soft failures in hardware.

– Often included in CPU supervisor circuits.

• Retriggering usually done in the main
program loop.

