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Abstract. The subject of this study is to construct a machine learning based system that estimates the 
aging/wearing properties of land vehicles. A hybrid approach combining both inductive and analytical 
machine learning methods is to be used since both training data and domain theory is expected to be 
available. This paper initially describes knowledge-based neural networks and then continues to 
discuss two extensions of it, the TopGen and REGENT algorithms. Both the basic aspects and the 
details of these algorithms are  reviewed to infer their advantages and disadvantages. Finally, the 
possible outcomes and corresponding steps to take are mentioned after the application of the methods.  
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1. Introduction 
 
This report aims to describe a specific analysis that is a part of a military project whose subject is 
modelling and simulation of land vehicles. The analysis under consideration aims to estimate aging-
wearing properties of land vehicles. This estimation needs automation since military forces have a 
large database containing past information about land vehicles. Altitude, climatic conditions, road 
conditions, being shot by enemy forces, vehicle parameters such as acceleration, fuel usage, duration 
of movement, etc and the eventual aging/wearing results belonging to each land vehicle in a certain 
period are all listed as seperate records in this information. This huge pile of knowledge will be 
interpreted by a learning-based system. In the past, statistical methods are more prevalently used to 
extract facts or guesses from such databases. However, since the database for the current analysis  
contains rather scarce and erroneus data, statistical methods are more subject to failure than the 
machine learning algorithms.    
 
This paper discusses three  machine-learning algorithms, which are KBANN, Topgen and REGENT. 
KBANN is a well-known method that is described in the background section, whereas the latter ones 
are extensions of KBANN that introduce further improvements over KBANN. The discussion section 
tries to infer  which model appears to be  more beneficial. The conclusion part addresses how these 
methods can be applied to the current project.    
 
2. Background  
 
2.1 KBANN: An Inductive-Analytical Method in Machine Learning 
 
Inductive methods seek general hypotheses that fit observed training data. They can fail with 
insufficient data and may be misled by incorrect bias. Analytical methods seek general hypotheses 
that fit observed training data and prior knowledge. They can generalize more accurately from less 
data and can be misled with insufficient prior data. Combining approaches offers possibility of 
powerful learning methods such as KBANN, knowledge-based neural networks.  
 
KBANN are networks whose topology is determined by mapping the dependencies of a domain-
specific rule base into a neural network. After the neural network is initialized to predict domain 
theory, it is then refined to fit the training data.  
 
To achieve this, we firstly create a sigmoid unit for each Horn clause in the domain theory. If sigmoid 
output is greater than 0.5, it is interpreted as true. If sigmoid output is less than 0.5, it is interpreted as 
false. Input is created for each antecedent.  
 
Weights are set to compute logical AND of the inputs. For each input corresponding to a non-negated 
antecedent, weights are set to positive constant W. For each input corresponding to a negated 
antecedent, weights are set to negative W.  
 
Each unit is constructed so that output will be greater than 0.5 just for cases for its Horn clauses. 
Threshold weight of the unit w0 is set to – (n-0.5) W. With 0 and 1 inputs, correct output is 
guaranteed. Additional input units are added to each threshold unit and weights are set approximately 
to 0. After the initial neural network is constructed, we refine the network using inductive learning. 
The tuning process learns new dependencies. 
 
KBANN generally generalizes more accurately than pure back-propagation, especially with scarce 
data. Methods have been developed for mapping the refined network back to Horn clauses. KBANN 
has been shown to be more effective at classifying previously-unseen examples than a wide variety of 
machine learning algorithms [Towell et al., 1990; Towell, 1992].  
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A large part of the reason for KBANN's superiority over other symbolic systems has been attributed 
to both its underlying learning algorithm (i.e., backpropagation) and its effective use of 
domain-specific knowledge [Towell, 1992 ].  
 
3. Related Work 
3.1 Heuristically Expanding KBANN:  The TopGen Algorithm 
 
Existing network training methods for KBANN lack the ability to add new rules to the rule bases. 
Thus, on domain theories that are lacking rules, generalization is poor, and training can corrupt the 
original rules, even those that were initially correct. A presented extension is TopGen [Opitz and 
Shavlik, 1993], an extension to the KBANN algorithm that heuristically searches for possible 
expansions of a knowledge-based neural network, guided by the domain theory, the network, and the 
training data. It does this by dynamically adding hidden nodes to the neural representation of the 
domain theory, in a manner analogous to adding rules and conjuncts to the symbolic rule base. 
 
TopGen uses a symbolic interpretation of the trained network to help decide where the primary errors 
are in the network. Units are added in a matter analogous to adding rules and conjuncts to the 
symbolic rulebase. Adding hidden nodes in this fashion synergistically combines the strengths of 
refining the rules symbolically with the strengths of refining them with backpropagation. 
 
TopGen heuristically searches through the space of possible ways of adding nodes to the network, 
trying to find the network that best refines the initial domain theory. Briefly, TopGen looks for nodes 
in the network with high error rates, and then adds new nodes to these parts of the network. TopGen 
uses two tuning sets, one to evaluate the different network topologies, and one to help decide where 
new nodes should be added (the latter tuning set is also used to decide when to stop training 
individual networks). TopGen uses KBANN's rule-to-network translation algorithm to define an 
initial guess for the network's topology. TopGen trains this network using backpropagation 
[Rumelhart et al., 1986] and places it on a search queue. In each cycle, TopGen takes the best network 
from the search queue (as measured by tuning-set-2), decides possible ways to add new nodes, trains 
these new networks, and places them on the search queue. This process repeats until reaching either 
(a) a tuning-set-2 accuracy of 100% or (b) a previously-set time limit. 
 
TopGen:  
GOAL: Search for the best network describing the domain theory and training examples.  
1. Set aside a testing set. Break the remaining examples into a training set and two tuning sets  
(tuning-set-1 and tuning-set-2).  
2. Place the trained network, produced by KBANN, on the search queue.  
3. Until stopping criteria met:  
(a) Remove the best network, according to tuning-set-2, from the search queue.  
(b) Use ScoreEachNode to determine the N best ways to expand the topology.  
(c) Create N new networks, train and put on the search queue.  
(d) Prune search queue to length M.  
4. Output the best network seen so far according to tuning-set-2.  
 
ScoreEachNode:  
GOAL: Use the errors in tuning-set-1to suggest good ways to add new nodes.  
1. Set each node's correctable-false-negative and correctable-false-positive counters to 0. Assume 
each node is a threshold unit.  
2. For each misclassified example in tuning-set-1, consider each node and determine if modifying its 
output will correctly classify the example, incrementing the counters when appropriate.  
3. Use the counters to order possible node corrections. High correctable-false-negative counts  
suggest adding a disjunct while high correctable-false-positive counts suggest adding a conjunct. 
 
Table 1.  The TopGen Algorithm  
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3.1.1 Where Nodes Are Added 
 
TopGen must first find nodes in the network with high error rates. It does this by scoring each node 
using examples from tuning-set-1. By using examples from this tuning set, TopGen adds nodes on the 
basis of where the network fails to generalize, not where it fails to memorize the training set. TopGen 
makes the empirically-verified assumption that almost all of the nodes in a trained knowledge-based 
network are either fully active or inactive. By making this assumption, each non-input node in a 
TopGen-net can be treated as a step function (or a Boolean rule) so that errors have an all-or-nothing 
aspect to them. This concentrates topology refinement on misclassified examples, not on erroneous 
portions of each example.  
 
TopGen keeps two counters for each node, one for false negatives and one for false positives defined 
with respect to each individual node's output. TopGen increments counters by recording how often 
changing the ``Boolean'' value of a node's output leads to a misclassified example being properly 
classified. That is, if a node is active for an erroneous example and changing its output to be inactive 
results in correct classification, then TopGen increments the node's false-positives counter. TopGen 
increments a node's false-negatives counter in a similar fashion. By checking for single points of 
failure, TopGen looks for rules that are near misses. TopGen adds nodes where counter values are 
highest, while breaking ties by preferring nodes farthest from the output node.  
 
3.1.2 How Nodes Are Added  
 
Once we know where to add new nodes, we need to know how to add these nodes. TopGen makes the 
assumption that when training one of its networks, the meaning of a node does not shift significantly. 
Making this assumption allows to alter the network in a fashion similar to refining symbolic rules. 
Towell [1992] showed that making a similar assumption about KBANN-nets was valid. In a symbolic 
rulebase that uses negation-by-failure, we can decrease false negatives by either dropping antecedents 
from existing rules or adding new rules to the rulebase. Since KBANN is effective at removing 
antecedents from existing rules, TopGen adds nodes, intended to decrease false negatives, in a fashion 
that is analogous to adding a new rule to the rulebase. If the existing node is an OR node, TopGen 
adds a new node, fully-connected to the inputs, as its child. If the existing node is an AND node, 
TopGen creates a new OR node that is the parent of the original AND node and another new node that 
TopGen fully-connects to the inputs; TopGen moves the outgoing links of the original node to 
become the outgoing links of the new OR nodes. To decrease false positives in a symbolic rulebase, 
we can either add antecedents to existing rules or remove rules from the rulebase. While KBANN can 
effectively remove rules [Towell, 1992], it is less effective at adding antecedents to rules and is unable 
to invent (constructively induce) new terms as antecedents.  
 
By allowing these additions, TopGen is able to add rules whose consequents were previously 
undefined to the rulebase. TopGen handles nodes that are neither AND nor OR nodes by deciding if 
such a node is closer to an AND node or an OR node (by looking at the node's bias and incoming 
weights). TopGen classifies previously-added nodes in such a manner, when deciding how to add 
more nodes to them at a later time.  
 
3.1.3 Additional Algorithmic Details  
 
After new nodes are added, TopGen must train the network. While we want the new weights to 
account for most of the error, we also want the old weights to change if necessary. That is, we want 
the older weights to retain what they have previously learned, while at the same time move in 
accordance with the change in error caused by adding the new node. In order to address this issue, 
TopGen multiplies the learning rates of existing weights by a constant amount (≤1) every time new 
nodes are added, producing an exponential decay of learning rates.  
 
To help address the trade-off between changing the domain theory and disregarding the misclassified 
training examples as noise, TopGen uses a variant of weight decay [Hinton, 1986]. Weights that are 
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part of the original domain theory decay toward their initial value, while other weights decay toward 
zero. Thus, we add to the usual cost function, a term that measures the distance of each weight from 
its initial value:  
 

 
 
The first term sums over all training examples T, while the second term sums over all weights W. The 
tradeoff between performance and distance from initial values is weighted by λ. 

 
3.2 Genetically Searching the Space of Network Topologies: The Regent Algorithm 

Another algorithm proposed by Opitz and Shavlik, REGENT [Opitz and Shavlik, 1997], tries to 
broaden the types of networks that TopGen considers with the use of GAs. We can view REGENT as 
having two phases: (a) genetically searching through topology space, and (b) training each network 
using backpropagation's gradient descent method. REGENT uses the domain theory to aid in both 
phases. It uses the theory to help guide its search through topology space and to give a good starting 
point in weight space.  

Table 2 summarizes the REGENT algorithm. REGENT first sets aside a validation set (from part of 
the training instances) for use in scoring the different networks. It then perturbs the KBANN-produced 
network to create an initial set of candidate networks. Next, REGENT trains these networks using 
backpropagation and places them into the population. In each cycle, REGENT creates new networks 
by crossing over and mutating networks from the current population that are randomly picked 
proportional to their fitness (i.e., validation-set correctness). It then trains these new networks and 
places them into the population. As it searches, REGENT keeps the network that has the lowest 
validation-set error as the best concept seen so far, breaking ties by choosing the smaller network in an 
application of Occam's Razor. A parallel version of REGENT trains many candidate networks at the 
same time using the Condor system [Litzkow, Livny, & Mutka 1988], which runs jobs on idle 
workstations.  

GOAL:    Search for the best network topology describing the domain theory and data. 

1. Set aside a validation set from the training instances. 
2. Perturb the KBANN-produced network in multiple ways to create initial networks, then 

train these network using backpropagation and place them into the population. 
3. Loop forever: 

a. Create new networks using the crossover and mutation operators. 
b. Train these networks with backpropagation, score with the validation set, and 

place into the population.  
c.  If a new network is the network with the lowest validation-set error seen so 

far(breaking tics by preferring the smallest network), report it as the curent best 
concept.  

Table 2: The REGENT algorithm. 

A diverse initial population will broaden the types of networks REGENT considers during its search; 
however, since the domain theory may provide useful information that may not be present in the 
training set, it is still desirable to use this theory when generating the initial population. REGENT 
creates diversity around the domain theory by randomly perturbing the KBANN network at various 
nodes. REGENT perturbs a node by either deleting it, or by adding new nodes to it in a manner 
analogous to one of TopGen's four methods for adding nodes. (Should there happen to be multiple 
theories about a domain, all of them can be used to seed the population.)  
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3.2.1 REGENT’s Crossover Operator 

REGENT crosses over two networks by first dividing the nodes in each parent network into two sets, 
A and B, then combining the nodes in each set to form two new networks (i.e., the nodes in the two A 
sets form one network, while the nodes in the two B sets form another). Table 3 summarizes 
REGENT's method for crossover and Figure 1 illustrates it with an example.  

REGENT divides nodes, one level at a time, starting at the first level, which is nearest the output 
nodes. When considering a level, if either set A or set B is empty, it cycles through each node in that 
level and randomly assigns it to either set. If neither set is empty, nodes are probabilistically placed 
into a set.  

Crossover Two Networks: 
GOAL: Crossover two networks to generate two new network topologies. 

1. Divide each network’s hidden nodes into sets A and B using DivideNode. 
2. Set A forms one network, while set B forms another. Each new network is created as follows: 

a.  A network inherits weight wji from its parent if nodes i and j either are also inherited 
or are input or output nodes. 

b. Link unconnected nodes between levels with near-zero weights. 
c. Adjust node biases to keep original AND or OR function of each node  

DivideNodes:  
GOAL: Divide the hidden nodes into sets A and B, while probabilistically maintaining each 
network’s rule structure. While some hidden node is not assigned to set A or B: 

 
(i) Collect those unassigned hidden nodes whose output is linked only to either 

previously-assigned nodes or output nodes. 
(ii) If set A or set B is empty: 

For each node collected in part (i), randomly assign it to set A or set B. 
Else 
 Probabilistically add the nodes collected in part (i) to set A or set B.  

Table 3: REGENT's method for crossing over networks. 

 

Figure 1: REGENT’S method for crossing over two networks.  
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An equation calculates the probability of a given node being assigned to set A. The probability of 
belonging to set B is one minus this probability. With these probabilities, REGENT tends to assign to 
the same set those nodes that are heavily linked together. This helps to minimize the destruction of the 
rule structure of the crossed-over networks, since nodes belonging to the same syntactic rule are 
connected by heavily linked weights. Thus, REGENT's crossover operator produces new networks by 
crossing-over rules, rather than simply crossing-over nodes.  

REGENT must next decide how to connect the nodes of the newly created networks. First, a new 
network inherits all weight values from its parents on links that (a) connect two nodes that are both 
inherited by the new network, (b) connect an inherited hidden node and an input or output node, or (c) 
directly connect an input node to an output node. It then adds randomly set, low-weighted links 
between unconnected nodes on consecutive levels.  

Finally, it adjusts the bias of all AND or OR nodes to help maintain their original function. For 
instance, if REGENT removes a positively weighted incoming link for an AND node, it decrements 
the node's bias by subtracting the product of the link's magnitude and the average activation (over the 
set of training examples) entering that link. This is done since the bias for an AND node needs to be 
slightly less than the sum of the positive weights on the incoming links. REGENT increments the bias 
for an OR node by an analogous amount when it removes negatively weighted incoming links (since 
the bias for an OR node should be slightly greater than the sum of the negative weights on the 
incoming links so that the node is inactive only when all incoming negatively weighted linked nodes 
are active and all positively weighted linked nodes are inactive).  

3.2.2 REGENT’s Mutation Operator 
 
REGENT mutates networks by applying a variant of TopGen. REGENT uses TopGen's method for 
incrementing the false-negatives and false-positives counters for each node. REGENT then adds 
nodes, based on the values of these counters, the same way TopGen does. Since neural learning is 
effective at removing unwanted antecedents and rules from KBNNs, REGENT only considers adding 
nodes, and not deleting them, during mutation. Thus, this mutation operator adds diversity to a 
population, while still maintaining a directed, heuristic-search technique for choosing where to add 
nodes; this directedness is necessary because we currently are unable to evaluate more than a few 
thousand possible networks per day. 
 
3.2.3 Additional Details 

REGENT adds newly trained networks to the population only if their validation-set correctness is 
better than or equal to an existing member of the population. When REGENT replaces a member, it 
replaces the member having the lowest correctness (ties are broken by choosing the oldest member). 
Other techniques such as replacing the member nearest the new candidate network, can promote 
diverse populations; however, one  wouldn’t not want to promote diversity at the expense of decreased 
generalization.  

REGENT can be considered a Lamarckian (Lamarckian evolution is a theory based on the inheritance 
of characteristics acquired during a lifetime.), genetic-hillclimbing algorithm, since it performs local 
optimizations on individuals, then passes the successful optimizations on to offspring. The ability of 
individuals to learn can smooth the fitness landscape and facilitate subsequent learning. Thus, 
Lamarckian learning can lead to a large increase in learning speed and solution quality.  
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4. Discussion 
 
An ideal inductive-learning algorithm should be able to exploit the available resources of extensive 
computing power and domain-specific knowledge to improve its ability to generalize. KBANN has 
been shown to be effective at translating a domain theory into a neural network; however, 
KBANN suffers in that it does not alter its topology. The TopGen algorithm outperforms KBANN 
since it has the advantage to modify the network topology. However, it also risks the possibility that 
the weight updates may wipe out the initial domain theory, especially in cases where the examples are 
drawn from a subset of the entire domain theory.   
 
TopGen showed statistically-significant improvements over KBANN in several real-world domains, 
and comparative experiments with a simpler approach to adding nodes verified that new nodes must 
be added in an intelligent manner [Opitz and Shavlik, 1993]. However, when we increase the number 
of networks TopGen considers during its search, it is observed that the increase in generalization is 
primarily limited to the first few networks considered [Opitz and Shavlik, 1997]. Therefore, TopGen 
is not so much an ``anytime'' algorithm, but rather is a first step towards one. This is mostly due to the 
fact that TopGen only considers larger networks that contain the original KBANN network as 
subgraphs; however, as one increases the number of networks considered, one should also increase the 
variety of networks considered during the search. Therefore, TopGen lacks broadening the range of 
networks considered during the search through topology space and unable to improve its performance 
after searching beyond a few topologies.  

A new algorithm, REGENT, uses a specialized genetic algorithm to broaden the types of topologies 
considered during TopGen's search. Experiments indicate that REGENT is able to significantly 
increase generalization over TopGen; hence, this new algorithm is successful in overcoming TopGen's 
limitation of only searching a small portion of the space of possible network topologies. In doing so, 
REGENT is able to generate a good solution quickly, by using KBANN, then is able to continually 
improve this solution as it searches concept space. Therefore, REGENT takes a step toward a true 
anytime theory refinement system that is able to make effective use of problem-specific knowledge 
and available computing cycles.  

5. Conclusion and Future Work 
 
The TopGen and REGENT algorithms generally produce better results than KBANN with an initial 
propositional domain theory and training data since they also change the topology of the initial neural 
network.. In addition, REGENT is better than TopGen since it searches a wider range of topologies 
due to its genetic algorithm.  
 
After a simple domain theory about aging/wearing properties of land vehicles is constructed by 
consulting the experts, all the three methods will be applied as a benchmark study. If the initial 
domain theory turns out to be more complex with the usage of variables, then an inductive-analytical 
approach that allows first-order logic in its domain theory may be applied. Or if it is realized that 
domain theory is too inefficient to make use of, purely inductive methods will also be considered.  
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