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ABSTRACT 
 
Query optimization refers to the process of producing a query execution plan (QEP) 
which represents an execution strategy for the query. The selected plan minimizes an 
objective cost function. Selecting the optimal execution strategy for a query is NP-hard in 
the number of relations. For this research, different operators will be implemented, and 
we will try to find an optimal strategy (optimizer), and perhaps more important, to avoid 
bad strategy. 
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1. INTRODUCTION 
 
The great commercial success of database systems is partly due to the development of 
sophisticated query optimization technology: users pose queries in a declarative way 
using SQL, and the optimizer of the database system finds a good way to execute these 
queries. The optimizer, for example, determines which indices should be used to execute 
a query and in which order the operations of a query (e.g., joins and group-bys) should be 
executed. To this end, the optimizer enumerates alternative plans, estimates the cost of 
every plan using a cost model, and chooses the plan with the lowest estimated cost. 
 
A more detailed view of the query optimization and execution component in a typical 
DBMS architecture is shown in Figure 1.  Queries are parsed and then presented to a 
query optimizer, which is responsible for identifying an efficient execution plan for 
evaluating the query. The optimizer generates alternative plans and chooses the plan with 
the least estimated cost. To estimate the cost of a plan, the optimizer uses information in 
the system catalog. 
 

Figure 1: Query Paring, Optimization, and Execution 
 
The query optimizer implements a set of physical operators. An operator takes as input 
one or more data streams and produces an output data stream. Examples of physical 
operators are (external) sort, sequential scan, index-scan, nested-loop join, and sort-merge 
join. We refer to such operators as physical operators since they are not necessarily tied 
one-to-one with relational operators, The simplest way to think of physical operators is as 
pieces of code that are used as building blocks to make possible the execution of SQL 
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queries. An abstract representation of such an execution is a physical operator tree, as 
illustrated in Figure 2. The edges in an operator tree represent the data flow among the 
physical operators. We use the terms physical operator tree and execution plan (or, 
simply plan) interchangeably. The execution engine is responsible for the execution of 
the plan that results in generating answers to the query. Therefore, the capabilities of the 
query execution engine determine the structure of the operator trees that are feasible.  

 
The query optimizer is responsible for generating the input for the execution engine. It 
takes a parsed representation of a SQL query as input and is responsible for generating an 
efficient execution plan for the given SQL query from the space of possible execution 
plans. The task of an optimizer is nontrivial since for a given SQL query, there can be a 
large number of possible operator trees: 

• The algebraic representation of the given query can be transformed into many 
other logically equivalent algebraic representations: e.g., 

           Join(Join(A,B),C)= Join(Join(B,C),A).  
 

• For a given algebraic representation, there may be many operator trees that 
implement the algebraic expression, e.g., typically there are several join 
algorithms supported in a database system.  

 
Furthermore, the throughput or the response times for the execution of these plans may be 
widely different. Therefore, a judicious choice of an execution by the optimizer is of 
critical importance. Thus, query optimization can be viewed as a difficult search problem. 
In order to solve this problem, we need to provide: 

• A space of plans (search space). 
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• A cost estimation technique so that a cost may be assigned to each plan in the 
search space. Intuitively, this is an estimation of the resources needed for the 
execution of the plan. 

• An enumeration algorithm that can search through the execution space. 
 
A good optimizer is one where (1) the search space includes plans that have low cost (2) 
the costing technique is accurate (3) the enumeration algorithm is efficient. Each of these 
three tasks is nontrivial and that is why building a good optimizer is an enormous 
undertaking. 
 
 
 
2. QUERY OPTIMIZATION DESCRIPTION  
  
Relational query optimization refers to the process of building an optimal (i.e., a 
minimum cost) execution plan, given an input query. 
 
A tuple is a list of elements, called attributes. The number of attributes of a tuple is called 
its arity. The set of attributes of a tuple is called its scheme. A relation is a set of 
elements, each of which is a tuple with the same arity. Suppose we have two relations R 
and S, with sets of attributes {A1… Am} and {B1,….,Bp}, respectively. The join of R and 
S with respect to attributes Ai and Bj , respectively, is formed by taking each tuple r from 
R and each tuple s from S and comparing them. If the attribute Ai of r equals the attribute 
Bj of s, then a tuple is formed from r and s by taking the attributes of r followed by all 
attributes of s, omitting the repeated attribute Bj. The scheme of the joined relation is then 
{A1,….., Am, B1,….., Bj-1, Bj+1,…., Bp}. A relational query language is a non-procedural 
one, i.e., a query specifies the wanted data and not the way the data is obtained. The 
following is a typical relational query: 
 
Select R2.*  
From R1, R2, R3, R4 
Where R1:A = R2:A and R2:B = R3:B and R3:C = R4:C 
 

 
This query involves three joins between four relations. The query graph depicted in 
Figure 3 is a subgraph of the database schema and establishes the join predicates (edges) 
between the relations (nodes) involved in the query. Here, we want to select all tuples 
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from R2 such that their A attribute is equal to the A attribute of a tuple from R1, and the 
B attribute of the former is also equal to the B attribute of a tuple from R3 whose C 
attribute is equal to the C attribute of a tuple from R4. The join is an expensive operation, 
because it requires the matching of tuples of relations according to their join attributes. 
The equal comparison characterizes the equijoin, the most frequent operation, due to the 
need of normalizing relations, inherent to the relational model. 
 
 The first task of the query optimizer in a relational context is to decide in which order the 
relations are accessed. The join ordering problem is NP-hard if the number of relations of 
the input query is not fixed. Furthermore, the optimizer must choose the access strategy 
for each individual relation. An access strategy involves, for example, choosing an access 
path, e.g., sequential scan or index. In a distributed environment, the relations may be 
located at different servers. Furthermore, relations may be partitioned among several 
servers, according to a range criterion. To perform a join between two relations, they 
must be located at the same site, or at least their corresponding fragments (when two 
relations are partitioned on the same servers and the same criterion is applied to the join 
attributes, the join may be concurrently executed on several servers and the partial results 
unioned and sent to the demander). In this case, the access strategy must also specify the 
location in which the join takes place. Either both relations or their corresponding 
fragments are located on the same site and the join may be performed without any 
redistribution, or a redistribution must be performed prior to the join. 

 
An execution plan captures the join ordering, the access strategy for each individual 
relation and additional execution information. It is typically represented as a binary 
operator tree, where the leaves are base relations and the internal nodes are join (or 
union) operator nodes, whose result is captured by transient relations. The transient 
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relations may or may not be materialized. Unary relational operators, such as selections 
and projections, are not represented, because they are applied “on-the-fly”, before the 
tuple is passed to the join or union operation. Figure 4 shows two different execution 
plans for the sample query. Although not represented for simplicity, each join node 
captures a join algorithm (i.e., nested loop, merge join, or hash join) and an indication of 
redistribution, when needed. In our example, depicted in Figure 4, relations R1 and R2 
are located at server S1, while relations R3 and R4 are located at server S2, i.e., the 
relations are pairwise located at different servers. Thus, both joins j4 and j5 can be 
executed respectively at servers S1 and S2 without any redistribution. However, join j6 
needs a redistribution prior to the operation: either the result of j4 is sent to S2 or the 
result of j5 to S1.  
 
Directed arcs linking two operator nodes express the fact that the transient relation 
produced by the first is consumed in pipeline by the second, i.e., in a tuple-by-tuple basis. 
Otherwise, the transient relation is completely stored, before it is consumed. Pipeline is 
obviously less expensive, and is chosen whenever possible. For example, all joins in 
figure 4(i) are executed using the nested loop algorithm. Thus, there is no need for 
materializing intermediate results. On the other hand, some join algorithms, e.g., merge 
join, require both relations to be sorted according to their join attributes. In this case, a 
previous materialization and sorting of an operand relation may be required. 
 
 
We say that an operator tree corresponds to a complete execution plan if it captures all 
the relations of the input query (the two trees in figure 4 represent complete plans). 
Otherwise, we say that the plan is partial. 
 
3. COST MODEL 
 
3.1 Cost Model in DBMS 
The cost model assigns an estimated cost to any partial or complete plan in the search 
space. It also determines the estimated size of the data stream for output of every operator 
in the plan. It relies on: 
 
a) A set of statistics maintained on relations and indexes, e.g., number of data pages in a 
relation, number of pages in an index, number of distinct values in a column 
 
b) Formulas to estimate selectivity of predicates and to project the size of the output data 
stream for every operator node. For example, the size of the output of a join is estimated 
by taking the product of the sizes of the two relations and then applying the joint 
selectivity of all applicable predicates. 
 
c) Formulas to estimate the CPU and I/O costs of query execution for every operator. 
These formulas take into account the statistical properties of its input data streams, 
existing access methods over the input data streams, and any available order on the data 
stream (e.g., if a data stream is ordered, then the cost of a sort-merge join on that stream 
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may be significantly reduced). In addition, it is also checked if the output data stream will 
have any order. 
 
 
The cost model gives a cost estimate for each operator tree. The cost refers to resource 
consumption, either space or time. Typically, query optimizers estimate the cost as time 
consumption. 
 
3.2 Cost Model in Distributed DBMS 
 
 In a distributed execution environment, there are two different time consumption 
estimates to be considered: total time or response time. The former is the sum of the time 
consumed by each processor, regardless of concurrency, while the latter considers that 
operations may be carried out concurrently. Thus, response time is a more appropriate 
estimate, since it corresponds to the time the user has to wait for an answer to the query. 
In a distributed environment, the execution of an operator tree S is split into several 
phases. Pipelined operations are executed in the same phase, whereas a storing indication 
establishes the boundary between one phase and the subsequent one. For example, the 
operator tree in Figure 4(i) is executed in one single phase, while the one in Figure 4(ii) 
in two phases. Resource contention is also another reason for splitting an operator tree 
into different phases. For instance, if a sequence of operations that could be concurrently 
executed require more memory than available (e.g., if the memory is not sufficient to 
store the entire hash tables for pipelined operations in the hash join algorithm), then it is 
split into two or more phases. An operator tree is also split into different phases if 
independent operations (which, in principle, could remain in the same phase) should be 
executed at the same home site: in this case, the operations are not concurrently executed 
just because the homes are the same and, accordingly, they are scheduled at different 
phases. Let )(sφ  denote the set of phases of plan s, while Ф )(sφ∈  denotes one individual 
phase. Moreover, let )(φο  denote the set of operations (i.e., the set of join operator nodes 
within the corresponding phase φ  of the operator tree). Since the operations within the 
same phase are carried in parallel, the response time respTime(φ ) of each phase Ф )(sφ∈  
is the time needed to execute the most expensive operation, plus the necessary delay to 
start the pipeline, given by: 
 

)(
max)(

φ
φ

Oi
respTime

∈
= )}()({ ipipeDelayiexecTime +  

where )(φOi∈  denotes an operator node, execTime(i) is the execution time of operation i 
, and pipeDelay(i) is the waiting period of operation i (time needed for the producer to 
deliver the first result tuples). The latter is null if the input relations of operation i are 
stored.  
 
 
The cost execTime(i) of an operator node i is built up from two components: the time to 
execute an operation and the time to redistribute transient results (transmission time). The 
time to execute an operation depends on the chosen algorithm, e.g., nested loop for join. 
To compute it, the optimizer uses statistics stored on a metabase, that are periodically 
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updated by the database administrator. Examples of such statistics are the cardinalities of 
relations and the number of distinct values of an attribute. As an example of a cost 
function, we show below the cost function execTime(j2) associated with the join node j2 
in figure 2(i). It consumes its left operand in pipeline, while the right operand is stored. 
Thus, the cost is: 
 

))()),,((max(cos)()( 131 jtransmitRjjointRtransmitJexecTime nestedLoopss +=  
 
where transmit(R) refers to the cost of redistributing R if needed. In a distributed 
environment, it is crucial to minimize this transmission time, since it impacts 
considerably the response time. Thus, our optimizer tries to exploit the placement of the 
operands to avoid redistribution. The transmission cost is estimated using system-
dependent parameters, such as the network speed. In the current example, either j1 or R3 
must be redistributed, since they are located at different servers. Thus, in the formula 
above one of the two transmission costs is different from zero and the other is null. The 
cost of computing the join of node j1 with relation R3 using, for example, the nested loop 
algorithm is: 
 

)(*)(*)()(*)()),(( 3311131 RaccessCostRcardjcardjaccessCostjcardRjjoinCostnestedLoop +=
 
 
where, for any relation R, accessCost(R)  is equal to zero if relation R is not stored (i.e., it 
resides in the main memory) and card(R) denotes the number of tuples in relation R. 
 
To estimate the cost f(s) of an operator tree s, the optimizer sums up the costs of all 
phases )(sφφ ∈ , which gives the total response time for executing the operator tree s: 
 

∑
∈

+=
0(

)]()([)(
s

storeDelayrespTimesf
φφ

φφ  

 
where )(φstoreDelay  is the time necessary to store the output results produced by phase 
φ . The latter is null if φ  is the last phase, assuming that the results are delivered as soon 
as they are produced. 
 
 
4. CONCLUSION 
 
Optimization is much more than transformations and query equivalence. The 
infrastructure for optimization is significant. Designing effective and correct SQL 
transformations is hard, developing a robust cost metric is elusive, and building 
extensible enumeration architecture is a significant undertaking. Despite many years of 
work, significant open problems remain. However, an understanding of the existing 
engineering framework is necessary for making effective contribution to the area of query 
optimization.  
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