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Abstract
This report describes recent approaches proposed for self-organization and pattern

formation, and introduces an evolutionary approach to the pattern formation and self-
assembly task. Parallelized genetic algorithms are used in this study to evolve neural
network controllers for reactive robots. The robots have probabilistic behaviors through
use of random inputs, which improve overall performance.
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1 Introduction
Various animal species show self-organized behaviors among its members, where the
individuals stay at a specific orientation and distance with respect to each other while
moving, or fill a specific area as homogeneously as possible. These behaviors involve
some type of pattern formation, and include bird flocking, fish schooling, and ants
moving in chains. This fact brings up the questions of whether similar behavior can
be obtained with robots and whether there are beneficial application areas for such
behavior other than biological behavior modeling.

Current application areas of pattern formation include search and rescue opera-
tions, landmine removal, remote terrain and space exploration, control of arrays of
satellites and unmanned aerial vehicles (UAVs). Another possible application might
come up with developments in nanorobotics, where multiple nano-scale robots would
be required to act and move in a specific formation.

If the robots have complete information, i.e., positions of all robots or GPS data,
then the problem is relatively easy. In this case, an almost perfect pattern can be ob-
tained by even distributed computation [9]. However, if the robots do not know every-
thing, then accomplishing the pattern formation task becomes very challenging. In that
case, the robots should have enough sensor capabilities to detect their relative positions
and orientations with respect to others. They should also communicate and cooper-
ate well enough to handle local robot-robot interactions to build and maintain a global
pattern.

In this study, a case is considered where robots have minimal communication and
no world representation and are completely reactive. The task of the robots is to form
a particular pattern and perform self-assembly, i.e. hold onto each other. The approach
used is evolutionary robotics, where controllers for robots are evolved using genetic
algorithms with a fitness function representing how well the desired behavior is per-
formed.

2 State of the Art
Properties of studies in cooperative mobile robotics can be stated under taxonomies.
Cao et al. [20] proposed a taxonomy which has the following axes:

• Group Architecture.

Centralization.

Homogeneity.

Means of communication (environment, sensing, or direct communication).

Modeling of other agents.

• Resource conflicts.

• Origins of cooperation.

• Learning.
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• Geometric problems.

Dudek et al. [4] claimed that these axes are highly interdependent and very broad,
which makes it difficult to identify isolated sample points within the taxonomy. They
put forward a slightly different set of taxonomy axes:

• Collective size.

• Communication range.

• Communication topology.

• Communication bandwidth.

• Collective reconfigurability.

• Processing ability.

• Collective composition (homogeneity).

The studies mentioned below vary on centralization, communication means, ho-
mogeneity, communication bandwith, and processing ability axes. They do not include
learning or modeling of other agents.

2.1 Centralized Pattern Formation
Centralized studies on pattern formation have path-planning that is done not by each
robot but only by a more sophisticated robot or by a stationary computing unit [1, 10,
18, 19]. The decided path for each robot is transmitted to it using a communication
channel.

One of the studies involving centralization is done by Egerstedt and Hu [10]. It
is a model independent coordination strategy for multi-agent formation control. Their
study decouples path planning from path tracking for the problem of constrained for-
mation with a desired path for the group. Path planning, which is done centrally, and
the tracking of virtual reference points are handled separately. Egerstedt and Hu for-
mulate the formation constraints and the movement of the robots with the assumption
that rotational and translational velocities of the robots can be controlled. The path
for a virtual leader is computed which gives reference points for the actual robots to
follow. A virtual application of the method on executing coordinated movement in
a triangular formation while avoiding an obstacle is presented. In this example, the
robots which form the corners of the triangle, go around an obstacle, which falls in
between the robots while they pass. This paper proves that if the tracking errors of the
robots are bounded or tracking is done perfectly, then the described method stabilizes
the formation error.

Koo and Shahruz [18] propose a centralized path-planning method, which aims to
make unmanned aerial vehicles (UAVs) fly in a desired formation. This is achieved by
computing path of each UAV by a leader UAV initially, which is more capable than
others. Only the leader has cameras and sensors. It tells the other UAVs, via a com-
munication system, what trajectories they should track. What UAVs should do is to
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take off and fly toward their trajectories and lock onto them. Two cases are consid-
ered in experiments: the case where UAVs take off one by one, and where they do it
simultaneously. Trajectory computation is the main focus of this study.

Belta and Kumar [1] describe another centralized trajectory computation scheme,
which makes use of kinetic energy shaping, i.e., instead of using a constant kinetic
energy metric, employing a smoothly changing the kinetic energy metric. The method
generates smooth trajectories for a set of mobile robots. It has a parameter which
determines how close to each other the robots will try to stay.

The disadvantages of the proposed trajectory planning method are that it does not
take obstacle avoidance into consideration and that it is not scalable, since the com-
plexity of the computations increase with the size of the team.

A target assignment strategy for formation building problem is described by Kowal-
czyk [19]. Starting with a scattered group of robots, the algorithm first assigns a target
point for each robot in the desired final formation. Then it generates necessary pri-
orities and trajectories for the robots to avoid collisions while moving to their target
points. Each robot has an area around some part of its path which is forbidden to enter
for robots that have a lower priority. If a forbidden area crosses a robot’s trajectory, it
waits until the robot with higher priority moves out of its way. The method is tested
with non-holonomic, i.e. which cannot move toward every direction (e.g. a car), and
holonomic robots. The disadvantages of this method are that it requires centralized
execution of the algorithm and a global sensor system. Also scalability of the method
is not addressed.

2.2 Decentralized Pattern Formation
Centralized computation can be an undesirable feature in multi-robot applications since
it decreases the overall robustness of the system. Furthermore, centralized systems
are more costly due to global communication channels. Therefore, decentralized ap-
proaches are more preferable in autonomous robotics. When there is no central pro-
cessing or task allocation, failures of a small number of robots do not cause total system
breakdown.

Communication and completeness of information known by robots impose a trade-
off between precision and feasibility of forming and maintaining the pattern and the
necessity of global information and communication. Studies that require global infor-
mation or broadcast communication [21, 15, 9] may suffer from lack of scalability or
high costs of the physical setup but allow more accurate forming of a greater range of
formations. On the other hand, studies using only local communication and sensor data
[16, 17, 7, 2, 13, 12, 5, 8] tend to be more scalable, more robust, and easier to build;
but they are also limited in variety and precision of formations.

Sugihara and Suzuki [9] achieve pattern formation by providing each robot the
global positions of all others. In this study, an algorithm is developed for each pattern.
It successfully accomplishes uniform distribution of robots in several pattern forma-
tions (circle, polygon, line, filled circle, and filled polygon), and separation of robots
into an arbitrary number of nearly equal sized groups. Even though this method is
successful and the control mechanism is decentralized, the requirement of complete
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information being supplied to all robots may render the method useless in many appli-
cations.

Carpin and Parker [15] introduced a cooperative leader following strategy for a
team of robots. The robots are able to maintain a specific formation while simultane-
ously moving in a linear pattern and avoiding dynamic obstacles. The robots use lo-
cal sensor information and explicit broadcast communication among themselves. The
framework handles heterogeneous teams, i.e. comprising of robots with different types
of sensors, as well as homogeneous ones.

Two levels of behaviors were implemented for tasks: team-level and robot-level
behaviors. Transitions are made when necessary among specific behaviors in these two
levels. For example, when a member of the team faces an obstacle, the whole team
waits together with that member for it to go away for a certain amount of time. If this
time is exceeded that member circumnavigates the obstacle and the team returns to its
main task of moving in a formation.

Balch and Hybinette [16, 17] discuss a different kind of strategy for robot formation
keeping, which resembles the way molecules form crystals. In this study, each robot
has several local attachment sites that other robots may be attracted to. This concept
is similar to molecular covalent bonding. Possible attachment site geometries include
shapes resembling an ’X’, an ’I’, and a ’+’, where the robot is the center of the shape
and the attachment sites are the ends of the line segments. Various robot formation
shapes result from usage of different attachment site geometries just as different crystal
shapes emerge from various covalent bond geometries. When a team of robots moving
in a formation, they avoid the obstacle by splitting around it and rejoining again one
passed it.

This approach is scalable to large robot teams because global communication is
not necessary. Local sensor information is sufficient to generate effective formation
behavior in large robot teams.

Another method similar to crystal generation which employs a form of probabilistic
control is proposed by Fujibayashi, Murata, Sugawara, and Yamamura [8]. This study
makes use of virtual springs to bring two agents near. Each pair of robots within a
certain range of each other, are connected via a virtual spring. Each agent is classified
by the number of neighboring agents within this range (number of connections).

The robots form triangle lattices that have random outlines. To obtain a desired
outline, the virtual springs among some robots are broken with a certain probability.
The candidate springs to be broken are chosen depending on the number of connec-
tions the robots it joins have. This breaking preference and the probability of breaking
changes from formation to formation as well several other parameters. This algorithm
uses only local information and is decentralized. One disadvantage of this method is
the difficulty of choosing custom parameters for each formation. Genetic algorithms
may be used for this purpose.

A graph-theoretic framework is proposed by Desai [7] for the control of a team
of robots moving in an area with obstacles while maintaining a specific formation.
The described method uses control graphs to define behaviors of robots in the forma-
tion. This framework can handle change of formations, i.e. transitions between control
graphs. This study includes proofs of the mathematical results required to enumerate
and classify control graphs. Although the computations for control graphs increase
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with the number of robots, the fact that these computations are decentralized allows
the methods described to be scalable to large groups.

Another graph-based approach to moving in formation problem is introduced by
Fierro and Das [13]. It proposes a four-layer modular architecture for formation con-
trol. Group control layer is the highest layer and it generates a desired trajectory for the
whole group to move for a particular task. Formation control layer implements a phys-
ical network, a communication network, and a computational network (control graph).
It maintains the formation by using local communication and relative position infor-
mation. Kinematics control layer deals with the required linear and angular velocities
of robots. And finally dynamic control layer handles the task of realizing the necessary
speeds given by the kinematics control layer. This four-layer architecture provides an
abstraction among tasks required at different levels. For example, a robot with dif-
ferent mass, inertia, and friction can be used only by changing the dynamic control
layer. Furthermore a modular adaptive controller is described which can manage con-
trol of robots with unknown dynamics and learns the robot dynamics on-the-fly. Hence
using a different robot requires no change in the system. The method described is
scalable (control algorithms scale linearly) and flexible (it allows various formations).
Centralized and decentralized versions of control graph assignment algorithm are also
described in the study.

Kostelnik et al. [12] describe an approach for scalable multi-robot formations using
only local communication and sensor information. Obstacle avoidance is also provided
in this method. It extends ordinary behavior-based approaches with the application of
social roles that represent positions in the formation and with the use of local communi-
cation to improve performance. As new agents join the formation, the shape is fixed by
local communications and role changes where necessary. The locally communicated
information reaches the leader, i.e. the front most robot, which knows the whole shape
of the current formation and which decides on the changes necessary. This information
is then propagated to the necessary followers, and the formation is updated.

There is no need to predefine social roles or positions for robots. Everything is
done dynamically as the formation grows. This method supports various formations
and also switching between them, therefore it is flexible as well as being scalable and
local.

A tool is implemented by Dudenhoeffer and Jones [2] to model and simulate collec-
tive behavior and interactions of a group of thousands of robots. Using this simulation
tool, the problem of hazardous material detection by thousands of micro-robots scat-
tered around a region is tackled.

Social potential fields are utilized for coordinated group behavior where robots are
desired to stay at a specific distance from others to obtain optimum coverage of the area.
They are also required to wander in this formation to search other parts. The desired
behavior is obtained by using subsumption architecture. This study also validates the
proposed method in cases where it is possible for agents to die and where agents have
imperfect sensor readings. The method uses only local information and is scalable to
very large groups of robots.

In their study [5] Mataric and Fredslund use local information to establish and
maintain formations among robots. Each robot has a unique ID and each robot has a
designated friend robot which it can see through a friend sensor. There is also minimal

5



communication going on among robots: heartbeat signals (robots broadcast their IDs),
swerve signals (changing direction), and formation messages. Each robot can learn the
number of robots in formation and the type of formation using broadcasted messages.
For each formation, each robot has a specified angle which determines the angle it
should keep between its front direction and the direction of its friend. This angle is
calculated locally. The details of this calculation are given in [5].

This study accomplishes the task of establishing and maintaining formations using
only local information and minimal communication. However the possible formations
are limited to chain-shaped ones that do not make a backward curve.

2.3 Evolutionary Approaches
Evolutionary methods are being more and more exploited in multi-robot systems, espe-
cially where the controllers needed are cumbersome to implement manually. Mataric
and Cliff [11] have discussed the challenges of using genetic algorithms to evolve con-
trollers for physical mobile robots. They have reviewed papers which use at least one of
the following approaches: genetic programming, evolving neural network controllers,
evolving morphology, evolution by shaping, evolving control hardware, using real vi-
sion as input, evolving in simulation, testing on real robots, and evolving entirely on
real robots.

Mataric and Cliff also focus on main difficulties and important issues in evolving on
physical robots, evolving in simulation, evaluation, fitness functions, co-evolution, en-
coding of chromosomes, hierarchical evolution, i.e., where building blocks are evolved
entities themselves. The authors draw attention to many details such as criterion of
genetic coding, necessary level of noise in simulations, and importance of free parame-
ters in evaluation. The bottom line of this discussion is that it still requires less effort to
design mobile robot controllers manually than to evolve them; but if the challenges dis-
cussed are overcome, then evolutionary methods may prove to be a practical alternative
to manual design.

A behavior-based approach to achieve formation control, which uses evolutionary
methods, is described by Cao et al. [21]. Motor schema-based architectures are pre-
ferred over subsumption architecture since they were claimed to be more flexible. The
robots have four primitive behaviors: move to goal, keep formation, avoid static obsta-
cle and avoid robot behavior. These behaviors are combined according to some control
parameters, which are determined by a genetic algorithm. Each member of the popula-
tion stores a set of parameters, and the populations are evolved using genetic operators.
The fitness evaluation function is a simulation run of some specific number of steps.
For the formation keeping behavior, a leader is selected which broadcasts its next po-
sition at each step. The others, i.e. followers, try to maintain the necessary relative
position with the leader.

This method shows some degree of adaptation to new obstacles in the environment.
A sample result is provided, which shows that a triangle formation is maintained while
avoiding obstacles with and without a new obstacle that didn’t exist during training.
The method uses broadcast communication and local sensor information. Scalability
is not verified in this study.
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Figure 1: Sketch of PES system is shown. The PES-Server runs on a Linux machine
and handles the management of the evolutionary method. It executes the selection
and reproduction of the individuals (genotypes) which are then dispatched to a group
of PES-Clients (running both Windows and Linux systems). The individuals are then
evaluated by the clients and their fitnesses are sent back to the server.

3 Infrastructure
Parallel Evolution System (PES) is developed together with Onur Soysal to be used in
studies under Kovan Research Lab 1.

PES is a platform to parallelize evolutionary methods on a group of computers con-
nected via a network. It separates the fitness evaluation of genotypes from other tasks
(such as selection and reproduction) and distributes these evaluations onto a group of
computers to be processed in parallel. PES consists of two components; (1) a server
component, named PES-Server, that executes the evolutionary method, the manage-
ment of the communication with the client computers, and (2) a client component,
named PES-Client, that executes programs to evaluate a single individual and return
the fitness back to the server. Figure 1 shows the structure of a PES system.

PES provides the user with an easy interface that relieves him from dealing with the
communication between server and client processes. PES-Client is developed for both
Windows and Linux, enabling the PES system to harvest computation power from com-
puters running either of these operating systems. An easy-to-use framework for imple-
menting evolutionary methods, and the inter-operability of the system distinguishes
PES from other systems available and makes it a valuable tool for evolutionary meth-
ods with large computational requirements.

PES uses PVM (Parallel Virtual Machine)[6]2, a widely utilized message passing

1Kovan Research Lab home page: http://www.kovan.ceng.metu.edu.tr.
2Available at http://www.csm.ornl.gov/pvm/pvm home.html.
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library in distributed and parallel programming studies, for communication between the
server and the clients. We have also considered MPI[14] as an alternative to PVM. MPI
is a newer standart that is being developed by multiprocessor machine manufacturers
and is more efficient. However PVM is more suitable for our purposes since (1) it
is available in source code as free software and is ported on many computer systems
ranging from laptops to CRAY supercomputers, (2) it is inter-operable, i.e. different
architectures running PVM can be mixed in a single application, (3) it does not assume
a static architecture of processors and is robust against failures of individual processors.

PES wraps and improves PVM functionality. It implements a time-out mechanism
is implemented to detect processes that have crashed or have entered an infinite loop.
It provides ping, data and result message facilities. Ping messages are used to check
the state of client processes. Data messages are used to send task information to client
processes and result packages are used to carry fitness information from clients.

PES consists of two components: PES-Server and PES-Client.

3.1 PES-Server
PES-Server provides a generic structure to implement evolutionary methods. This
structure is based on Goldberg’s basic Genetic Algorithm[3] and is designed to be eas-
ily modified and used by programmers. The structure assumes that fitness values are
calculated externally. In its minimal form, it supports tournament selection, multi-point
cross-over and multi-point mutation operators.

PES-Server maintains a list of potential clients (computers with PES-Client in-
stalled), as specified by their IP numbers. Using this list, the server executes an evolu-
tionary method and dispatches the fitness evaluations of the individuals to the available
clients. The assignment passes the location of the executable to be run on the client as
well as the parameters that represent that particular individual and the initial conditions
for the evaluation. Then it waits for the clients to complete the fitness evaluation and
get the computed fitness values back.

PES-Server contains fault detection and recovery facilities. Using the ping facility
the server can detect clients that have crashed and assign the uncompleted tasks to other
clients. In its current implementation, the server waits for the evaluation of fitness
evaluations from all the individuals in a generation before dispatching the individuals
from the next generation.

3.2 PES-Client
PES-Client acts as a wrapper to handle the communication of the clients with the server.
It fetches and runs a given executable (to evaluate a given individual) with a given set
of parameters. It returns the fitness evaluations, and other data back to the server.

Client processes contain a loop that accepts, executes and sends result of tasks.
Client processes reply to ping signals sent by the PES-Server to check their status.
Crashed processes are detected through this mechanism.

PES-Clients are developed for single processor PC platforms running Windows
and Linux operating systems. Note that to use clients with both operating systems
the fitness evaluating program should be compilable on both systems. In its current
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Figure 2: The robot structure (top view) and the neural network controller. The com-
ponents of the robot and the corresponding neurons in the controller are shown with
the same numbers. 1, 2, 3: Microphones; 4, 5: Wheels; 6: Speaker; R: Random input.

implementation, these clients have the fitness evaluation component embedded within
them to simplify the communication. Yet, once the clients are installed, the fitness
evaluation component of the system can be updated using scp (secure copy) utility
from the server.

4 Robot Structure
The robots used in this study have two wheels, one omni-directional speaker, and three
uni-directional microphones which can receive sounds emitted by other robots within
a certain range and in a 120 deg region. Their controller is a single-layer neural net-
work which takes microphone data as input and gives out motor wheel speeds and a
speaker signal which is either on or off. The controller also has a probabilistic input
implemented as a random number generator which causes dynamic and nondetermin-
istic global behaviors in robot groups. The robot model and the controller can be seen
in Figure 2.

5 Conclusion
In evolutionary robotics, the fitness of an evolved controller is evaluated by running
simulated robots with the controller on physics based simulations, which provide real-
istic physics and therefore ensure the effectiveness of the evolved controller on physical
robots. However they are costly in terms of processing power, which affects the level
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of their utility considerably. To overcome the processing demand problems, Parallel
Evolution System (PES) is developed to parallelize the genetic algorithm.

The simulations in this study are done using Open Dynamics Engine (ODE) which
is an open-source 3D dynamic physics simulator.

The focus of this thesis is on evolving controllers for pattern formation and self-
assembly tasks. Because of the probabilistic inputs, the overall behavior of robot
groups shows interesting variations from normally expected behaviors that cause lo-
cal minimum points in fitness space. The probabilistic inputs help the group of robots
get out of local minima and find a configuration with a higher fitness.

For example, consider the clustering problem for robots. When probabilistic inputs
are not used, the robots tend to form and maintain small clusters. When probabilistic
inputs are utilized, robots seem to have a tendency to leave their current cluster with a
certain probability and look for other robot clusters. Eventually, this causes formation
of larger and larger clusters, and finally one big cluster as desired. So, probabilistic
inputs can improve performance of reactive robot systems and will be utilized also in
this thesis.

So far, the development of PES and most of the simulator is completed. The work
to be done includes extension of robots in the simulator to attach to other robots, ex-
perimenting with several pattern formation and attachment tasks, and trying different
uses of probabilistic inputs.
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