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ABSTRACT 

One of the most important factors on the success of genetic programming about 

trees is the representation of them. The representation should exhibit efficiency, locality 

and heritability to enable effective evolutionary computing. 

Neville proposed three different methods for encoding labeled trees. In 2001, it is 

reported that, Prüfer-numbers is a poor representation of spanning trees for evolutionary 

search. But there is no information about the performance of Neville's second type of 

encoding.  

In this report  we examine methods for coding labeled trees, explain locality and 

heritability and give four possible testing problems to compare different codings in 

evolutionary algorithms: the degree-constrained minimum spanning tree problem, the 

optimal communication spanning tree problem,  the rectilinear Steiner problem and the 

fixed-charge transportation problem. 
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INTRODUCTION 

An evolutionary algorithm (EA) studies on a population of data structures that represent 

candidate solutions to a problem. In a decoder based EA, each data structure can be 

thought as a instruction list to a decoder. The decoder builds the solution  which is 

represented by the data structure. The data structure is the genotype of the solution and 

the decoded solution is the phenotype of solution. 

 In EAs, how the data structure is implemented is important. Because, the decoder 

should be fast and the coding implemented in genotype-decoder pair should exhibit 

locality and heritability. In other words, small changes in genotypes should correspond to 

small changes in the solutions they represent and solutions generated by crossover should 

combine features of their parents. 

EAs have been applied to problems that search spaces of spanning trees. It is easy 

to find an unconstrained minimum spanning tree but when constraints are around, it 

becomes computationally hard to solve.  

Prüfer and Neville studied on the problem of representing the trees as efficient 

and suitable as possible. In 1918 Prüfer suggested a deceptively elegant coding of 

spanning trees. It is a one-to-one mapping between spanning trees on n nodes and strings 

of n-2 node labels. Conventionally the integers from 1 to n label the nodes and the strings 

of labels are called Prüfer numbers. Later Neville offered three codings [3]. Bryant,  

Julstrom, Raidl and Rothlauf claimed that Prüfer numbers is a poor representation of 

spanning trees for evolutionary search [2]. They compared Prüfer numbers with other 
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codings of spanning trees in EAs for four problems: the degree-constrained spanning tree 

problem, the communication spanning tree problem, the rectilinear Steiner problem and 

fixed-charge transportation problem. In every case, evolutionary search is more effective 

with other codings than Prüfer numbers [2]. 

Although Prüfer numbers are said to be poor representation, there is no study 

about Neville’s codings. This report gives the necessary information to start such a study. 

EXISTING METHODS FOR ENCODING LABELED TREES 

Prüfer’s method encodes a tree by iteratively deleting the leaf node with minimum label 

and recording the neighbor until only one edge remains. One drawback of the Prüfer code 

is its lack of structure for determining the diameter or center(s) of the tree directly from 

the code without first constructing the tree. For the tree in Figure 1, Prüfer code is (9, 7, 

7, 3, 10, 4, 4, 7, 1). 

Neville proposed three methods to encode a labeled tree. The first one is similar 

to Prüfer’s method. A root node is chosen and it is never deleted. When deleting the 

leaves, the one with smallest label is chosen. If the node with biggest label is chosen as 

the root node, the method becomes same with Prüfer’s method. For the tree in Figure 1, 

Neville’s first code is (9, 7, 7, 3, 10, 4, 4, 7, 1).  

Neville’s second method proceeds in k stages where k is the radius of the tree. In 

each stage, the leaves are deleting in the ascending order of their labels and their 

neighbors are recorded. The process is repeated until one edge remains. If we apply this 

method for the tree in Figure 1, at first stage, we will delete 2, 5, 6, 8 and 11. Their 
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neighbors to record are: 9, 7, 7, 3, 1. At second stage, 1, 3, 9 will be deleted and 7, 10 and 

4 will be recorded. At last stage, 7 will be deleted and 4 will be recorded. Then the code 

is (9, 7, 7, 3, 1, 7, 10, 4, 4). This algorithm lead to a simple algorithm for computing the 

diameter of a tree directly from the code. However,   there is no known O(n)-time 

algorithm to encode or decode the trees. Besides, at each stage there is a necessity of 

ordering the leaf nodes. 

The third approach of Neville studies on sub-trees. Firstly it chooses the leaf with 

smallest label. It removes the leaves until no leaves remain in that sub-tree. When there is 

no leaf to remove in the sub-tree, it removes the leaf with smallest label at the tree. 

Similar to other encodings, whenever one node is deleted, it neighbor is recorded. This 

procedure continues until one edge remains. For the tree given in Figure 1, the leaf with 

smallest label is 2. Then we remove 2 and record 9. Now, 9 is a leaf and we remove 9, 

record 4. Then we do not have a leaf to delete at the sub-tree. The next leaf to delete is 5, 

since it is the one with smallest label at hand. 5 is deleted and 7 is recorded. 6 is deleted, 

7 recorded. 8, 3, 10, 4 and 7 are deleted in order from the same sub-tree and edge 

connecting 1 and 11 remained. So, the code is (9, 4, 7, 7, 3, 10, 4, 7, 1). 

 

Figure 1: A tree on 11 nodes 
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PROPERTIES 

Efficiency and O(n)-time complexity are important for encoding and decoding methods. 

But for an coding to be considered as a good representation for labeled trees, it should 

also have high locality and heritability. 

A coding has high locality if mutating a genotype changes the corresponding 

phenotype only slightly. Prüfer numbers are said to have poor locality [2]. 

A coding has high heritability with respect to a crossover operator, if offspring 

phenotypes consist mostly of substructure of their parents’ phenotypes.  

SAMPLE PROBLEMS 

Four problems are suggested to use for testing a coding method. 

The Degree-Constrained Minimum Spanning Tree Problem 

Given a weighted undirected graph G, the degree-constrained minimum spanning tree 

problem (d-MSTP) seeks a spanning tree on G of minimum weight whose degree does 

not exceed d>1.d-MSTP is NP-hard [2]. 

The Optimal Communication Spanning Tree Problem 

 Consider a collection of nodes. Each node demands communicating with each other. In 

Optimal Communication Spanning Tree Problem (OCSTP), a tree-structured network of 

minimum total cost of connecting all nodes is looked for. A links flow is the sum of the 

communication demands between all pairs of nodes communicating directly or indirectly 
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over the link. The cost for each link is not fixed a priori but depends on the length and 

capacity of the link. The links capacity must satisfy the link’s flow and this flow depends 

on the entire tree structure. OCSTP is NP-hard [2]. 

The Rectilinear Steiner Problem 

Given a collection of points in a plane, a rectilinear Steiner tree (RStT) is a tee of 

horizontal and vertical line segments that connects them all. The length of a RStT is the 

sum of its segments’ lengths. The search of minimum length on a set of points is the 

rectilinear Steiner problem (RStP) and it is NP-hard. 

The Fixed-charge Transportation Problem 

Consider m sources and n destinations. The problem is to distribute a commodity from 

sources to destinations with minimum cost of transportation. The amounts of commodity 

available at each source and required at each destination are known. 

CONCLUSION AND FUTURE WORK 

One of the most important factors on the success of genetic programming about trees is 

the representation of them. The representation should exhibit efficiency, locality and 

heritability to enable effective evolutionary computing. 

There are studies on Prüfer numbers and it is said to be a poor representation of 

spanning trees for evolutionary search. Although there exist some algorithms for 

Neville’s methods, no consideration of them on evolutionary computing is available. Is 

suggested to examine algorithms for encoding and decoding of Neville's encodings, 
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examine the properties of Neville's encodings and compare it with other codings in 

evolutionary algorithms for four problems: the degree-constrained minimum spanning 

tree problem, the optimal communication spanning tree problem,  the rectilinear Steiner 

problem and the fixed-charge transportation problem 
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