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Abstract 
 
Random number generators (RNG) are used in many applications.  For many application, it is 
important that the generators have good randomness properties.  Good random number 
generators are hard to find and many widely used techniques are shown to be inadequate.  
Finding high-quality, efficient algorithms for random number generation on parallel 
computers is even more difficult.  This report covers the theory behind random number 
generation.  The properties of parallel and sequential random number generators and 
requirements for them are defined by comparison.  The question of why do we need random 
number generators are explained.  Some parallel and serial random number generation 
algorithms are covered in detail emphasizing the facts that lead to the parallelization of 
random number generators.  The advantages and disadvantages of both parallel and serial 
algorithms are discussed.  Some recommendations for using random number generators on 
parallel computers are provided. 
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1 Introduction 

Random numbers are widely used for simulations in computational science and engineering 
such as, in Monte Carlo method to estimate a many dimensional integral by sampling the 
integrand, in modeling random processes in nature such as those arising in ecology or 
economics, in cryptography, where randomness is used to hide information from others.  
Random numbers may also be used in games, for example during interaction with the user [4]. 

Random numbers are in practice computed using deterministic algorithms.  So, these are more 
accurately called pseudo-random number generators.  In some simulations, the quality of 
pseudo-random numbers is not that important.  However, in many problems for which random 
numbers are most heavily used, the quality of the random number generator is crucial. 

The aim of this article is to explain the theory behind the random number generation and give 
basic information about both serial and parallel random number generators.  In order to 
understand parallel random number generators, sequential random number generators (SRNG) 
must be fully understood.  Firstly, the properties of sequential random number generators and 
the requirements for SRNG are covered.  The questions of which applications are using 
SRNGs and why do we need random number generators are answered. Some examples of 
SRNGs are given like linear congruential generators, lagged-Fibonacci generators and 
combined generators to understand the theoretical background behind the subject.  Lastly, the 
deficiencies of sequential random number generators are shown and the facts that lead us to 
the parallel random number generators (PRNG) are explained.   

After having a general view of SRNGs, the properties of PRNGs and the requirements for 
them are covered.  Types of PRNGs are explained like centralized parallel random number 
generators, replicated random number generators and distributed random number generators.  
The emphasis is given on the distributed random number generators. Two main techniques of 
distributed random number generators are explained (splitting and parameterization).  
Splitting technique is based on splitting the full-period sequences of conventional 
pseudorandom number generators into subsequences.  Given the subsequences, each parallel 
process requiring random numbers is then given a different subsequence for this purpose.  The 
splitting methods considered include breaking the original sequence into non-overlapping 
subsequence blocks, using leapfrog technique to make subsequences, using the Lehmer tree 
method (Random tree method), and using recursive-halving leap ahead for subsequence 
definition.  After discussing splitting technique in detail, another alternative is presented, 
using parameterized, full period pseudorandom number sequences, and several methods based 
on parameterization are discussed.  Parameterized versions of commonly used pseudorandom 
number generators are described like linear congruential generators, shift register generators 
and lagged-Fibonacci generators. 
 
After gaining the knowledge behind the parallel and sequential random number generators, 
what is gained and what is lost by parallelization is shown and the advantages and 
disadvantages of PRNGs in contrast to sequential ones are made clear. 
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2 Sequential Random Number Generation 
 
RNGs are used for generating an array of numbers that have a random distribution. 
Generation is done by via a function called generator, which is defined as, when applied to a 
number, yields the next number in the sequence.  The RNGs used in practice do not actually 
generate numbers that are truly random. These programs use deterministic algorithms and are 
actually pseudo-random number generators. The resulting sequence looks statistically 
independent and uniformly distributed. 
 
RNGs require the user to specify an initial value, or seed. Initializing the generator with the 
same seed will give the same sequence of random numbers.  If different sequences are needed, 
different seeds must be used .  
 
Many widely used RNGs have been shown to have quite poor randomness properties that lead 
to incorrect results in certain applications.  It is better to use a RNG that has been thoroughly 
tested and recommended. For applications in which random numbers are only used 
occasionally, the quality of the generator will probably not matter, however in applications 
which use a lot of random numbers, such as Monte Carlo simulations, the quality of the 
generator is crucial and poor generators can produce incorrect results [1]. 
 
2.1 Requirements for Sequential Random Number Generators  

Ideally a pseudo-random number generator would produce a stream of numbers that  

1. are uniformly distributed,  
2. are uncorrelated,  
3. never repeats itself,  
4. satisfy any statistical test for randomness,  
5. have long period 
6. are reproducible (for debugging purposes),  
7. are fast 
8. are portable (the same on any computer),  
9. can be changed by adjusting an initial seed value,  
10. can easily be split into many independent subsequences,  
11. can be generated rapidly using limited computer memory.  

In practice it is impossible to satisfy all these requirements exactly.  For practical purposes, it 
is required that the period of repetition of the sequence be much larger than the number of 
pseudo-random numbers that might be used in any application, and that the correlations be 
small enough that they do not noticeably affect the outcome of a computation.  

It is important to realize that the numbers generated by random number generators are not 
random, but are instead pseudo-random. Since random number generators use deterministic 
algorithms, they cannot be completely uncorrelated, and since the numbers they produce are 
reproducible, they cannot be truly random. However, many applications that use random 
numbers require that the random number generator be of highest quality.   

A fast generator requires a minimal number of very simple operations, and it is this simplicity 
that often leads to problems with the quality of such generators.  It is logical to sacrifice a 
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little speed for much better randomness properties.  In using a random number generator, it is 
usually better to be slow than sorry [1].   

2.2 Sequential Random Number Generators 
 
In this section, the most popular and commonly used random number generators are 
introduced.   
 
2.2.1 Linear Congruential Generators (LCG) 

The most commonly used random number generator is the LCG. It is based on the following 
iterative scheme: 

X n = (a X n-1 + c ) mod m 

where m is the modulus, a the multiplier, and c the additive constant that may be set to 0.  (a, 
c, m) must be chosen carefully for a long period, good uniformity and randomness properties.  
The size of the modulus constrains the period, and is usually a prime or a power of 2.  

LCGs work very well for most applications but are known to have some major defects.  The 
main problem is the least significant bits of the numbers produced are correlated.  Another 
problem is that many commonly used LCGs use a modulus m that is a power of 2 since it is 
fast and convenient to implement on a computer.  However, this approach produces highly 
correlated low order bits and long-range correlations for intervals that are a power of 2.  To 
avoid these problems, it is best to use modulus that is prime rather than a power of 2.  
Moreover, increasing the precision of the generators for example, by using 64-bit numbers 
rather 32-bit ones can decrease the effects of these regularities.  However, there are practical 
limits to this approach.  If modulus becomes greater than machine precision, then much 
slower multi precision arithmetic must be used, so in practice precision should not be made 
larger than the machine precision [1]. 

Despite these known problems, large precision LCGs with well-chosen parameters appear to 
work very well on sequential computers.  Besides, LCGs are the best choice of generators for 
applications that don’t expect the lower-order bits to be random [1]. 

Multiple recursive generators (MRG) generalize LCGs by using a recurrence of the form, 

Xn = (a1 Xn-1 + a2 Xn-2 + a3 Xn-3 + ………  + ak Xn-k + b) mod m  

For a given value k.  Choosing k > 1 will increase time taken to generate each number, but 
will greatly improve the period and randomness properties of the generator. 

2.2.2 Lagged-Fibonacci Generators (LFG) 

The name of the generator comes from the Fibonacci sequence.  LFGs generate random 
numbers from the following iterative scheme: 

Xn = Xn-p Θ Xn-q (mod m) 
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where p and q are the lags, satisfying the conditions p > q > 0 and Θ is any binary arithmetic 
operation (addition, multiplication or XOR).  The current X is determined by the values of X 
from p and q places ago. For an LFG, p initial values X0, X1,.....,Xp-1 are needed.  This method 
requires storing the p previous values in the sequence in an array called a lag table. 

As in LCGs, the parameters p, q and m must be carefully chosen to provide good randomness 
properties and the largest period.  An advantage of this generator is that the period can be 
made arbitrarily large by just increasing the lag p.  This also improves randomness properties 
since smaller lags mean higher correlations between the numbers in the sequence. One 
problem with LFG is that p words of memory must be kept current, whereas LCG requires 
only that the last value of X be saved. 

The randomness properties of LFGs are best when multiplication is used, with addition being 
next best, XOR being by far the worst [1].   

LFGs using addition are the most popular because they are very simple and very fast.  All the 
computation can be done in floating point, which avoids a costly integer to floating point 
conversion, and large periods can be obtained on 32-bit processors without having to use slow 
multi-precision arithmetic [1].  Each pseudo-random number can be generated with a single 
floating-point addition and a modulus operation.  Great care must be taken when choosing the 
lags for additive LFGs.  Usually, much too small lags to give adequate randomness properties 
are chosen in many applications.  Increasing the lag improves the randomness properties of 
the generator.  A lag greater than 1000 is recommended for an additive LFG [1]. 

The choice of the lag may affect the speed of the generator, depending on the computer used.  
If a vector processor is used, a larger lag may improve performance, since the vector lengths 
are larger.  If a scalar processor with limited cache is used, having a large lag may reduce the 
performance. 

Multiplicative LFGs have seen little use.  Although, slower than additive LFGs, they are as 
fast as 32-bit LCGs.  They can be used with smaller lags than additive LFGs.  One of the 
problems of multiplicative LFGs is handling the possible overflow of multiplication [1]. 

Multiplicative LFGs are rarely used but have longer periods and good randomness properties.  
Where as, additive LFGs are popular since they are simple and easy to implement [1]. 

The randomness properties can be improved by using multiple lags by combining three or 
more previous elements of the sequence, rather than two. 

2.2.3 Combined Generators 
 
In order to improve the quality of a generator, two different generators arre combined.  
Combined generators have the following recurrence relation, 
 
Sn = ( Xn + Yn) mod m 
 
Additively combining to different 32-bit LCGs is more efficient than implementing an LCG 
with a much larger modulus [1]. 
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3 Parallel Random Number Generation 
 
The goal of parallel random number generation is to design a random number generator that 
produces random sequences of integers on each processor in a parallel computing 
environment [7].  
 
Driving force to parallelize sequential random number generators comes from the necessity to 
get higher speed in Monte Carlo applications.  In order to get higher speed, these applications 
make extensive use of the parallel computers, since these calculations are particularly well 
suited to such architectures and often require very long run [4]. 
 
In this section, firstly, requirements for parallel random number generators are discussed.  
Then, some methods for generating random number distributedly are given.  These methods 
all assume a good source of sequential random numbers which is transformed in some manner 
to a sequence of normally distributed random numbers. 
 
3.1 Requirements for Parallel Random Number Generators  
 
In addition to the requirements for an ideal SRNG, random number generator for a parallel 
computer should ideally have the following additional properties:  

1. The generator should work for any number of processors.  
2. The sequences of random numbers generated on each processor should all satisfy the 

requirements of a good sequential generator. 
3. There should be no correlations between the sequences on different processors (inter-

processor correlation).  
4. The same sequence of random numbers should be produced for different numbers of 

processors, and for the special case of a single processor [7].  
5. The speed of generation of the numbers on each processor and the amount of memory 

required per processor should be independent of the number of processors. 
6. The algorithm should be efficient, which in practice means there should be no data 

movement between processors. Thus, after the generator is initialized, each processor 
should generate its sequence independently of the other processors.  

As with the ideal sequential generator, in practice it is not feasible to meet all these 
requirements. Among the above-mentioned requirements of PRNGs, the most important one 
is the requirement that there should be no inter-processor correlation. This issue did not arise 
in the case of serial random number generators.  

3.2 Types of Parallel Random Number Generators 

There are three general approaches to the generation of   random numbers on parallel 
computers: centralized, replicated, and distributed. In the centralized approach, a sequential 
generator is encapsulated in a task from which other tasks request random numbers. This 
avoids the problem of generating multiple independent random sequences, but is unlikely to 
provide good performance. Furthermore, it makes reproducibility hard to achieve: the 
response to a request depends on when it arrives at the generator, and hence the result 
computed by a program can vary from one run to the next.  
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In the replicated approach, multiple instances of the same generator are created.  Each 
generator uses either the same seed or a unique seed, derived, for example, from a task 
identifier.  Clearly, sequences generated in this fashion are not guaranteed to be independent 
and, indeed, can suffer from serious correlation problems.  However, the approach has the 
advantages of efficiency and ease of implementation and should be used when appropriate.  

In the distributed approach, responsibility for generating a single sequence is partitioned 
among many generators, which can then  be parceled out to different tasks. The generators are 
all derived from a single generator; hence, the analysis of the statistical properties of the 
distributed generator is simplified. Focus will be on the distributed generators in the next 
section.  

3.3 Distributed Parallel Random Number Generators 

There are several methods for creating distributed parallel random number generators.  These 
methods can be grouped under two basic techniques, which are splitting and parameterization.   

The underlying idea behind the splitting technique is to parallelize a sequential generator by 
taking the elements of the sequence of pseudo-random numbers it generates and distributing 
them among the processors in some way. On the other hand, parameterizing technique 
identifies a parameter in the underlying recursion of a serial random number generator that 
can be varied.  Each valid value of this parameter leads to a recursion that produces a unique, 
full-period stream of random numbers [3,5]. 

Finding a good parallel random number generator is a very difficult problem [2].  One of the 
reasons is that, any small correlations that exist in the sequential generator may be amplified 
by the method used to distribute the sequence among the processors, producing stronger 
correlations in the subsequences on each processor.  Inter-process correlations may also be 
introduced.  Also, the method used to initialize a parallel random number generator is at least 
as important as the algorithm used for generating the random numbers, since any correlation 
between the seeds on different processorscould produce strong inter-processor correlations. 
 
3.3.1 Splitting Techniques 

Splitting techniques based on the following concept, that is to parallelize a sequential 
generator by taking the elements of the sequence of pseudo-random numbers it generates and 
distributing them among the processors in some way.   

There are several methods to do this, which differs slightly but have the same basic concept, 
like sequence splitting, leapfrog, independent sequences, and random tree method.  A top-
down approach can be taken to choose a splitting scheme and a SRNG.  There are five 
properties that make a SRNG suitable for splitting.  These are: 

1. existence of a fast-leap-ahead algorithm, 
2. period long enough to be split, 
3. serial pseudo randomness, 
4. substream independence, 
5. fast serial implementation [5]. 
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By considering these five important factors, different splitting techniques are discussed one by 
one. 

3.3.1.1 Sequence Splitting (Blocking Technique) 

Another method for parallelizing random number generators is to split a serial random 
number sequence into non-overlapping contiguous sections, each generated by different 
processors.  If there are N processors, and the period of the serial sequence is P, then the first 
processor gets the first P/N random numbers, the second processor gets the second P/N 
random numbers, etc.  This method required a fast way to advance the serial sequence P/N 
steps. It turned out that LCG was a good candidate for this, but also, it is possible to use 
additive LFGs since jumping ahead is done only once in the initialization of the generator. 

A possible problem with this method is that although the sequences on each processor are 
disjoint, this does not necessarily mean that they are uncorrelated.  In fact, it is known that 
LCG with power of modulus, causes long-range correlations, which could become short-range 
inter-stream or inter-processor correlations in parallel generators. 

One danger of this method is that if the user happens to consume more random numbers than 
expected, then the sequences could overlap.  Another disadvantage of this kind of generator is 
that it does not produce the same sequence for different number of processors [1, 3, 5]. 

3.3.1.2 The Leapfrog Method 

In this approach, the sequence of a serial generator is partitioned in turn among multiple 
processors like a deck of cards dealt to card players. If there are N processors, each processor 
leapfrogs by N in the sequence. For example, processor i gets Xi , Xi+N , Xi+2N , etc.  To 
produce the same sequence of random numbers for different number of processors, this 
method can be used.  In order to use this method, jumping ahead in the sequence should be 
done easily.  This can be done quite easily with LCGs but not practical for LFGs.  

This method has serious problems that long-range correlations in the original sequence can 
become short-range inter-stream correlations in the parallel generator.  Since, it is known that 
LCGs using a modulus that is a power of two have correlations between elements in the 
sequence that are a power of two apart.  Moreover, for many parallel computers, the physical 
number of processors is a power of two.  So, this method becomes useless.  

It may be adequate for some applications.  If it is to be used, number of processors must be 
fixed and the modulus must be prime [1, 3, 5]. 

3.3.1.3 Independent Sequences 
 
The previous two methods are impractical for LFGs using multiplication.  There is an even 
simpler way to parallelize a lagged Fibonacci generator, which is to run the same sequential 
generator on each processor, but with different initial lag tables.  This method is similar to 
sequence splitting, in that each processor generates a different contiguous section of the 
sequence.  In this case, the starting point in the sequence is chosen at random for each 
processor, rather than computed in advance using a regular increment.  This has the advantage 
of reducing possible long-range correlations, but only if the seed tables on each processor are 
random and independent [3]. 
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The initialization of the seed tables on each processor is a critical part of this algorithm.  This 
leads to requiring an excellent parallel random number generator in order to provide a good 
enough initialization routine to implement an excellent parallel random number generator.  
The initialization can be done by a combined LCG, or even by a different LFG. 
 
A potential disadvantage of this method is that since the initial seeds are chosen at random, 
there is no guarantee that the sequences generated on different processors will not overlap..  
However, using a large lag eliminates this problem to all practical purposes.  In fact, the 
likelihood of overlap is even less than might be expected, due to a useful property of lagged 
Fibonacci generators.  Any LCG produces a single periodic sequence of numbers, with 
different seeds just providing different starting points in the sequence. 
 
As with sequence splitting, just because the sequences on each processor do not overlap, does 
not necessarily mean they are uncorrelated.  A deficiency of the independent sequence method 
is that, like sequence splitting it does not produce the same sequence for different number of 
processors. 

3.3.1.4 The Random Tree Method (Lehmer Tree Method) 

The idea of random tree method is to choose two linear congruential generators, called the 
right and the left generators, L and R, that differ only in the values used for a, to construct a 
tree of pseudorandom numbers. 

Lk+1 = aL Lk mod m 

Rk+1 = aR Rk mod m 

Left generator L is applied to a seed L0 and a random sequence is generated.  Application of 
the right generator R to the same seed generates a different sequence. By applying the right 
generator to elements of the left generator's sequence (or vice versa), a tree of random 
numbers can be generated. By convention, the right generator R is used to generate random 
values for use in computation, while the left generator L is applied to values computed by R to 
obtain the starting points R0, R1, etc., for new right sequences.  In other words, left generator 
leaps ahead in the right sequence to seed the next right generators.  Thus, for linear 
congruential generators, the concept of Random tree can be thought of as using a precomputed 
leap-ahead value to split the sequence into a fixed number of sequences. 

The strength of the random tree method is that it can be used to generate new random 
sequences in a reproducible and noncentralized fashion. This is valuable, for example, in 
applications in which new tasks and hence new random generators must be created 
dynamically. Before creating a new task, a parent task uses the left generator to construct a 
new right generator, which it passes to its new offspring. The new task uses this right 
generator to generate the random numbers required for its computation. If it in turn must 
generate a new task, it can apply the left generator to its latest random value to obtain a new 
random seed.  

A deficiency of the random tree method is that there is no guarantee that different right 
sequences will not overlap. The period of R is usually chosen to be near to m, because this 
maximizes the quality of the random numbers obtained by using the generator. Hence, the 
starting points Ri returned by the left generator are likely to be different points in the same 
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sequence, in which case we can think of L as selecting random starting points in the sequence 
constructed by R. If two starting points happen to be close to each other, the two right 
sequences that are generated will be highly correlated.  

In some circumstances, it can be known that a program requires a fixed number of generators. 
In this case, a variant of the random tree method called the leapfrog method can be used to 
generate sequences that can be guaranteed not to overlap for a certain period.  

Let n be the number of sequences required. Then aL and aR is defined as a and an respectively. 

Lk+1 = a Lk mod m 

Rk+1 = an Rk mod m 

Then, n different right generators (R0… Rn-1 ) are created by taking the first n elements of L as 
their starting values. The name leapfrog method refers to the fact that the i th sequence Ri 
consists of Li and every n th subsequent element of the sequence generated by L (Figure 
3.3.1.4.1).  As this method partitions the elements of L, each subsequence has a period of at 
least P/n, where P is the period of L.  In addition, the n subsequences are disjoint for their first 
P/n elements.  

   
Figure 3.3.1.4.1 The leapfrog method with n=3. Each of the three right generators selects a 
disjoint subsequence of the sequence constructed by the left generator's sequence.  

In other situations, the maximum number, n, of random values needed in a subsequence is 
known but not the number of subsequences required. In this case, a variant of the leapfrog 
method (modified leapfrog) can be used in which the role of L and R are reversed so that the 
elements of subsequence i are the contiguous elements (Figure 3.3.1.4.2) as follows:  

Lk+1 = a n Lk mod m 

Rk+1 = a Rk mod m 

It is not a good idea to choose n as a power of two, as this can lead to serious long-term 
correlations.  
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Figure 3.3.1.4.2 Modified leapfrog with n=3. Each subsequence contains three contiguous 
numbers from the main sequence.  

3.3.1.5 Recursive Halving Leap – Ahead 
 
Recursive halving leap ahead is the extension of the Random tree concept to more general 
splittings.  An undesirable property of the Random tree is that the left generator is fixed.  This 
means that splitting a previously split sequence can lead to considerable overlap with the 
grandparent sequence.  To overcome this problem, variable sized leap-ahead values are used.  
Thus the first split leaps ahead about one half of the period, the next about one-quarter, and so 
on.  This procedure is called recursive halving leap-ahead [3]. 
 
3.3.2 Parameterizing Techniques 

The parameterization method is one of the latest methods of generating parallel random 
numbers. The exact meaning of parameterization depends on the type of parallel random 
number generator.  This method identifies a parameter in the underlying recursion of a serial 
random number generator that can be varied. Each valid value of this parameter leads to a 
recursion that produces a unique, full-period stream of pseudorandom numbers [3,5].  Each 
processor is given the same PRNG but a different set of parameter values.  Hence, each 
processor executes the same general algorithm, and the same piece of code, only the 
parameters passed in initialization is varied from process to process [6].  Two different 
methods for parameterization are given in the next sections. 

3.3.2.1 Cycle Parameterization 
 
This method makes use of the fact that some parallel random number generators have more 
than one cycle.  If the seeds are chosen carefully, then it can be assumed that each random 
sequence starts out in a different cycle so two sequences will not overlap.  Thus the seeds are 
parameterized that is, sequence I gets a seed from cycle I, the sequence number being the 
parameter that determines the cycle [4].  In other words, consider a single PRNG that has full-
period cycles that fall into different equivalence classes depending on the initial seed.  This 
PRNG is then seeded appropriately to ensure that each parallel process uses a different 
equivalence class [6].  This is the case for the additive lagged-Fibonacci generator, which is 
parameterized through its initial values.   
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3.3.2.2 Parameterized Iteration 
 
Just as the disjoint cycles parameterized, many of the iteration functions can be parameterized. 
This is the case in the parameterization of linear congruential generators and shift register 
generators.  The most important parameter of an LCG is the modulus m.  Its size constraints 
the period, and for implementation reasons it is always chosen to be either prime or a power 
of two.  The parameterization method used is based on the type of modulus that has been 
chosen.  When m is prime, a method based on used of the multiplier a as the parameter has 
been proposed.  An alternative way to use LCGs to make parallel random number generators 
is to parameterize the additive constant when the modulus is a power of two [3,4,5].  
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4 Parallel RNGs vs Serial RNGs 
 
As can be seen from Table 1 and Table 2 in appendices, there are several methods for 
implementing serial and parallel random number generators.  Each parallel random number 
generator no matter which technique is used relies on an underlying sequential random 
number generator.  This fact makes parallel random number generators more prone to errors 
than serial ones because any small correlations that exist in the sequential generator may be 
amplified by the method used to distribute the sequence among the processors, producing 
stronger correlations in the subsequences on each processor.  Besides, inter-process 
correlations may also be introduced which is not considered in the sequential case.  Also, the 
method used to initialize a parallel random number generator is at least as important as the 
algorithm used for generating the random numbers, since any correlation between the seeds 
on different processors could produce strong inter-processor correlations. As a result of these 
facts, one can easlily understand that finding a good parallel random number generator is a 
very difficult problem.  Moreover, it is realized that there is no such thing as a parallel random 
number generator that behaves flawlessly for every application [1]. 
 
On a sequential computer good generators to use are a 48-bit or 64-bit LCG, a multiplicative 
LFG with lag greater than 127, or a 32-bit or more combined LCG.  If speed is an issue it is 
recommended to use additive LFG with lag greater than 1279, possibly combined with 
another generator, or using multiple lags [1].   
 
All of the parallel random number generators have possible problems.  Splitting technique 
suffers from serious problems as can be seen from Table 4.2.  When considering a single 
sequence for parallel use, one must keep in mind that the parent sequence must have a period 
of enough length to provide all the random numbers required for all the parallel processes.  
Thus the period of parent generators will have to be very big.  Unfortunately, for most 
generators a longer period implies that the cost of generating each random number goes up.  
In addition, there is often correlation in the parent sequence.  Thus, splitting is not an 
acceptable way to parallelize random number generators, except with certain types of 
generators.  Hence, parameterization technique can be a better way to parallelize random 
number generators [3]. 
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5 Conclusion 
 
In this report, it is aimed to give theoretical information about random number generators.  
Firstly, sequential random number generators are explained in detail.  Requirements and 
methods are given.  Then, parallelization of random number generators is discussed.  Finally, 
sequential and parallel random number generators are compared and advantages and 
disadvantages of each method are determined.  
 
There are several sequential random number generators available. The most important 
conclusion regarding sequential generators is that good ones may exist, but are hard to find 
[2].  Linear congruential generators with a short period are certainly to be avoided.  Lagged-
Fibonacci generators using the XOR operation are also to be avoided; other lagged-Fibonacci 
generators may be satisfactory if the lags are large.  If the operation to be used is addition then 
the lags should probably be at least 1000 [1]. 
 
There are several methods to parallelize random number generators each having its own 
problems.  The driving force is to get higher speed.  But, the desire for reproducibility, when 
combined with speed, is also an important factor and limits the feasible parallelization 
schemes.  Unfortunately, there is not a parallel random number generator that behaves as 
desired for every application [1]. 
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Appendices 
 
SRNG Formula (mod m) Advantages Disadvantages Recommended Usage 

Correlation on the least significant bits Linear Congruential X n = a X n-1 + c Last value of X must be kept 
Long range correlations when 
modulus is power of two 

 Use large precision 
(48 bit or 64 bit) 

 Use prime modulus 
 
Lagged Fibonacci Xn = Xn-p Θ Xn-q  Increase in period by increase in p p words of memory must be kept Multiple lags 
Additive  Xn = Xn-p + Xn-q   Fast and easy to implement 

 Floating point computation 
Poor randomness than MLFG Use lag > 1000  

Multiplicative Xn = Xn-p * Xn-q   Good randomness properties 
 Longer period than additive 

 Overflow of multiplication 
 Can use smaller lags than ALFG 
 Slower than ALFG faster than 

LCG 

Use lag > 127 

XOR Xn = Xn-p ⊕ Xn-q   Poor randomness than ALFG Not recommended 
 
Combined  Sn =  Xn + Yn Better than one generator with 

larger m 
 32 bit or more 

precision LCG 

Table 1 Properties of serial random number generators 
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PRNG SRNG Advantages Disadvantages 
Splitting Technique 
Sequence Splitting (Blocking) LCG 

ALFG 
Disjoint sequences  Requires a fast way to leap ahead 

 Sequences can be correlated 
 Short range inter processor correlations 
 Short range inter stream correlations 
 Same sequence is not produced for different 

number of processors 
 Sequences can overlap when more numbers 

are required 
Leapfrog LCG Same sequence is produced 

for different # of processors 
 Requires a fast way to leap ahead 
 Sequences can be correlated 
 Short range inter processor correlations 
 Short range inter stream correlations 

Random Tree CLCG + LFG 
LFG + LFG 

 Disjoint sequences like 
Sequence splitting 

 Reduces possible long 
range correlations 

 Reproducible sequences 
 Better than Sequence 

splitting and leapfrog  

 Seed tables must be random and 
independent 

 The initialization of the seed tables is 
critical 

 Seed tables can overlap 
 Same sequence is not produced for different 

number of processors 
 Different right sequences can overlap. 

Recursive Halving Leap- Ahead LCG + LFG 
LFG + LFG 

Leap-ahead sizes are variable 
Better than Random tree  

 

Parameterization Technique 
Cycle Parameterization ALFG   

LCG Prime Modulus 
Power of Two 

Parameterized Iteration 

SRG 

  

Table 2 Properties of parallel random number generator 


