

HORIZON OCCLUSION CULLING FOR REAL-TIME RENDERING
OF HIERARCHICAL TERRAINS USING PROGRAMMABLE

GRAPHICS HARDWARE

Hacer Yalım

Department of Computer Engineering
Middle East Technical University

November 2003

Abstract

Terrain visualization is a difficult problem for applications requiring accurate images
of large datasets at high frame rates, such as flight simulation and ground-based aircraft
testing using synthetic sensor stimulation. The main problem is to maintain dynamic, view-
dependent triangle meshes and texture maps that produce good images at the required frame
rate. This report describes a technique to improve the horizon occlusion-culling algorithm for
hierarchical terrains using programmable graphics hardware techniques so that the
hierarchical terrains could be rendered in real-time efficiently. The occlusion horizon is a
well-known algorithm. The main issue of this work is the adaptation of this algorithm to
hierarchical terrains. The algorithm will be implemented with the usage of programmable
graphics hardware to accelerate the rendering time. The chosen occlusion algorithm is simple
to implement and requires minimal pre-processing and additional storage. The occlusion
horizon is constructed as the terrain is traversed in an approximate front to back ordering.
Regions of the terrain are compared to the horizon to determine when they are completely
occluded from the viewpoint. Quad trees are selected to construct the hierarchical structure
for the terrains. By this work, the improvement of rendering time using hardware
programming techniques for occlusion culling on hierarchical terrains will be observed.

 Table Of Contents

1 Introduction ..1
2 Related Work..3
3 Terrain Rendering Algorithm ...4
4 Horizon Occlusion Culling...4

4.1 Front-to-Back Ordering ..5
4.2 Occluders and Occludees..5
4.3 Horizon Representation ..6

5 Hardware Programming ...7
5.1 Vertex Programming ..7

6 Current State and Future Work...8
7 Conclusion ..9
8 References ..9

 1

1 Introduction

Real-time navigation of detailed terrain model is important for many applications. Since the
early days of computer graphics, the military has used flight simulators to train pilots. Flight
simulators for commercial airlines soon followed. Simulator technology inevitably made its
way into video games. Today real-time terrain navigation routinely used in other applications
such as visualizing a proposed road construction project or data captured by a satellite. The
quality of these applications often depends on the size and detail of the terrain models.

The huge size of terrain models presents several problems. Large models require a lot of
memory. Models covering only a few square miles can consist of millions of polygons.
Texture-maps for terrain models usually have a high resolution in order to provide sufficient
detail at close proximity, which makes them very large. Often only part of the model can fit in
memory at any time. Rendering large terrain models at real-time frame rates can be
challenging. While rendering hardware has made great advances in recent years, even the best
hardware can render only a few million polygons per second. Memory bandwidth limitations
restrict the amount of texture that can be rendered to a few hundred megabytes per second.
These limitations are not a problem when the viewer is close to the ground looking down
because large portions of the model fall outside the view frustum and may be culled away.
However, when the viewer is looking at the model from high altitude or is looking out
horizontally at ground level, arbitrarily large portions of the model may be visible. Since it is
currently not possible to render millions of polygons with many megabytes or even gigabytes
of texture at high frame rates, rendering large terrain models in real-time requires specialized
algorithms.

One solution is to render the terrain using an adaptive level of detail (LOD). Features in the
distance do not need to be rendered with the same fidelity as those that are close to the viewer.
A smaller, coarser representation may be used for distant features without any noticeable
degradation of image quality. Hierarchical terrain representations such a quadtrees are
especially well suited for adaptive LOD and have been used extensively in computer graphics
and GIS systems. Quadtrees facilitate choosing a representation with an appropriate resolution
for different parts of the model. Adaptive LOD can drop the number of polygons in a given
frame from millions down to tens of thousands. Adaptive LOD yields similar exponential
reductions in the amount of texture required for a given frame. This is because fewer, lower
resolution texture maps can be used to cover large portions of the model.

While adaptive LOD dramatically reduces the polygon count for both high altitude views and
horizontal views close to the ground, the polygon counts for horizontal views remain
considerably higher than those for other views. This is a characteristic of terrain models.
When viewed from above, all of the geometric detail becomes compressed in the viewing
direction, so a coarser LOD may be used. Horizontal views require a finer resolution to
capture the details of the terrain profiles, which leads to a higher polygon count. This is
unfortunate because these views tend to be very common in 3D terrain visualization
applications. However, the rough features of a terrain that require an increased polygon count
also afford an opportunity for optimization, since they often occlude large portions of the
terrain model. Occluded regions need not be drawn because they make no contribution to the
final image. Figure 1 shows the reduction in rendered geometry due to occlusion culling.

 2

Figure 1: Top-left, view of a terrain without occlusion culling. Top-right, occlusion culling is
enabled. The bottom row shows the terrain elements drawn for the corresponding views in the
top row.

While some work has been done to perform occlusion culling for terrains, most algorithms
pre-compute visibility and require significant pre-processing and storage. In this report I
explain an algorithm to compute occlusions in terrains on the fly. It is based on a well-known
technique. With a height field, anything below the horizon line occluded. By tracking the
horizon line of the height field as it is rendered in front-to-back order, self-occlusions within
the height field may be detected. The horizon effectively fuses the occlusion of many
individual parts of the terrain. Terrain elements that fall completely below the horizon are
culled. The rest of the terrain elements are sent to the rendering pipeline and rendered using
programmable hardware. Their information is used to update the visibility horizon as it
sweeps through the scene. The improvement done in this work is the application of the
occlusion horizon to hierarchical terrains using programmable graphics hardware. The
algorithm requires minimal pre-processing and additional memory. Hardware programming
techniques are used in the implementation.

After briefly discussing work related to this subject in Section 2, I give an overview of the
terrain-rendering algorithm I use in Section 3. Section 4 explains the details of the occlusion-
culling algorithm. In Section 5, I introduce the usage of the programmable graphics hardware
for this work. Finally I make some concluding comments and discuss directions for future
work.

 3

2 Related Work

There is a vast amount of research in the area of visibility and occlusion culling. An excellent
survey of visibility techniques is provided by Cohen-Or et al [7]. Visibility algorithms can
determine visibility either in a precomputation step or on the fly. Precomputed visibility
algorithms pre-process a scene to determine which objects are visible from points or regions
in space. At run time, only the objects in the pre-calculated set of visible objects for the
current viewpoint are drawn. This can result in enormous savings when the size of the set of
visible objects is small compared to the number of objects in the scene. The major drawbacks
of pre-processing algorithms are that they are limited to static scenes, they can require a lot of
storage space to store the visibility information, and the pre-processing step can be very time
consuming. These algorithms have been successfully applied to indoor scenes because these
environments are static and the potentially visible sets are usually small [2,23]. Cell-based
precomputed visibility algorithms have been applied to outdoor scenes [8,24]. Schaufler et al.
[21] present a general algorithm based on voxelization of occluders, which can also be applied
to terrains. Stewart [22] precomputes visibility for hierarchical terrains. A representation of
the visibility horizon is created for each vertex of the terrain in a pre-processing step. This
information is used at run-time to determine whether a particular vertex is occluded from the
current viewpoint.

Another class of occlusion algorithms calculates occlusions on the fly. Green et al. [14] and
Zhang et al. [25] use hierarchical data structures to calculate occlusions on the pixel level.
Bartz et al. [3] use hierarchical spatial subdivision and OpenGL features to detect occlusions,
thus taking advantage of graphics hardware. Hey et al. [15] use a low-resolution grid in
combination with an occlusion buffer or z-buffer that is updated in a lazy manner order to
reduce the cost of expensive pixel level queries. Coorg and Teller [10] classify large
occluding polygons and use the support planes of these polygons to determine occlusion of
other objects in the scene. Bitner et al. [4] propose a similar algorithm that uses a BSP data
structure to merge occluders. Both of these methods require large polygons to be used as
occluders. Since terrains typically consist of many small polygons, neither of the algorithms is
suitable for terrain rendering.

Occlusion horizons can be used to render 2D-functions and height fields. Downs et al. [13]
show how to use an occlusion horizon for urban environments. The proposed algorithm in this
report uses an occlusion horizon and thus is similar in many ways to theirs. However, I use an
occluder representation that is better suited for large terrains. Moreover, the horizon
representation I use is much simpler.

Hierarchical terrain models may be built on top of a uniform rectangular grid in the form of a
quad tree or a restricted quad tree, also called a bintree. When you go over the LOD
Algorithms, you find out that there are mainly three different approaches [16][17][12]. In
[16], Hugues Hoppe presents an algorithm based on Progressive Meshes, a relatively new
technique for adding triangles to arbitrary meshes, as you need more detail. It is a good paper
but a bit difficult. Moreover, it requires high memory requirements than the other two
algorithms [12] and [17]. The second paper [2] Lindstrom et al. presents a Quad Tree
structure that is used to represent a patch of landscape. A Quad Tree recursively tessellates the
landscape creating an approximation of the Height Field. Quad Trees are very simple and
efficient. Finally, in [12] Duchaineau et al. presents an algorithm (Real-time Optimally
Adapting Meshes) based on a Binary Triangle Tree structure. Here each patch is a simple
isosceles right triangle. Splitting the triangle from its apex to the middle of its hypotenuse

 4

produces two new isosceles right triangles. The splitting is recursive and can be repeated on
the children until the desired level of detail is reached. Hierarchical terrains may also be built
upon irregular triangle meshes. Since more freedom can be used in selecting the location of
vertices, it is often possible to represent a terrain with fewer triangles with these methods than
with those based on regular grids. Examples of these types of terrains include Delaunay
triangulations [11,19] and view dependent progressive meshes [16]. Terrains can also be
rendered efficiently using voxels [9].

Finally, I present the main references about programmable graphics hardware. Hewlett-
Packard proposed an overview of VISUALIZE fx Graphics Accelerator Hardware [26] and an
extension to OpenGL providing an occlusion query based on a flag [27].

3 Terrain Rendering Algorithm

I used a variation of quadtrees described by Cline and Egbert [6]. The advantage of their
method is that it eliminates the noticeable ‘pop’ that occurs when the level of detail changes
suddenly. The technique is called as ‘q-morphing’ (quadtree morphing) that perform a smooth
morph between adjacent levels of detail.

The algorithm contains a quadtree with small grids called gridlets at the nodes. The resolution
of each gridlet may change, however their spatial size is fixed. The quadtree is traversed top-
down to decide which gridlet to draw. First, the visibility is checked for each gridlet against
the view frustum. A gridlet lying totally outside the viewing frustum is discarded along with
all its children. If projected screen radius of a gridlet falls below a user specified treshold, it is
added to the drawing list. Otherwise, the traversal continues with its children. Once a gridlet
is placed in the drawing list, a screen-space error metric and the local surface roughness are
used to compute an LOD parameter describing how finely the gridlet should be decimated in
order to satisfy user specified error bounds. The LOD parameters for both the current gridlet
and its parent are combined in such a way that the parameter varies smoothly as position
changes. The integer part of the parameter is used to pick a subdivision level. The fractional
part is used to morph from one subdivision level to the next. Please refer [5] for the details of
the calculation of LOD parameters.

4 Horizon Occlusion Culling

Gridlets are first tested against the view frustum. The gridlets that are inside the viewing
frustum are then tested against the current visibility horizon. The horizon is constructed by the
highest points in the screen space projection of the terrain, rendered thus far. The projection of
the gridlet is checked against the horizon and if it falls below that horizon, it is guaranteed to
be hidden and culled along with all its children. If any part of the gridlet lies above the
horizon, the horizon is updated with the gridlet’s occlusion profile and the gridlet is added to
the drawing list.

Occlusion horizon algorithms, in general, consist of three main parts:

• Front to back ordering of the scene elements,
• Simplified representations of the scene elements for the calculations of the occlusions

efficiently,
• A representation for the visibility horizon.

In the following sections, each of these components is described briefly.

 5

4.1 Front-to-Back Ordering

The horizon occlusion-culling algorithm works only if the objects are rendered in front-to-
back order. In my representation I have a hierarchical structure for the grids, which is a
quadtree. Therefore, the correct traversal order is enough for front-to-back ordering. What is
the correct traversal order then? A correct traversal order of the gridlet children only need to
ensure that each child is rendered before its siblings that it may occlude. It depends on the
slope of the line through the gridlet center from the viewing position. The traversal order is
stored in a simple array for each quadrant.

4.2 Occluders and Occludees

The efficiency of the visibility test is very important for this application, because it is
performed many times per frame. Hence, simple approximations to the terrain elements are
more suitable for tests instead of the original terrain elements. There are two simplifications
for a terrain element, occludees and occluders. The occludee is a conservative over-estimation
of the extents of an object used for the visibility test. Over-estimation of the object ensures that
when occludee is below horizon line, object itself is guaranteed to be below the horizon.
However, for some cases, the occludee can be marked as visible while object is below the
horizon. That time object is rendered unnecessarily, but this does not change the final image.
The occluder is the conservative under-estimation of the occlusion profile of the object, which
is used to update the horizon.

For my implementation I used single line-segments as in [1] to approximate the edges of the
gridlet as the occluder representation. Each line segment requires only two height values and
only the top two or three of these segments have to be tested against per gridlet, depending on
the orientation of the gridlet with respect to the viewer. The line that is generated with the
edge points of the gridlet is shifted down so that, all edge points lie above it to ensure that the
occluder edge is conservative. The edge points at the finest decimation level for the gridlet is
used for the gridlet to guarantee that the occluder edge valid for all levels of detail. If finest
decimation level is not chosen, then the conservative property of the occluder may not be
satisfied, since morphing to a higher resolution may cause the edge to dip below the occluder
line.

Sample occlusion profiles are given in Figure 2. As it is seen, there are some limitations for
the occluder edges. They cannot catch for the occlusions caused by raised portions in the
center of the gridlet and for the gridlet with curved edges.

Axis-aligned bounding boxes are good and practical approximations for the occludee
representation. Only the top-most edges of the bounding boxes need to be compared to the
horizon.

 6

Figure 2: Gridlets with occluder edges and their occlusion profiles. The gridlet on the right is
an example of a poor approximation of the actual gridlet edge by the occluder.

4.3 Horizon Representation

The occlusion horizon is an array of size of the resolution of the image. Each element of the
array represents a vertical column of the image. Height of each column is stored in this array.
A horizon update is performed by scan-converting the projected occluder edges into the array,
recording the height of the edge at each column whenever it is greater than the column’s
current height. If the occludee edge is higher than the horizon at any point, than the scene
object is marked as visible. An example for the visualization of the horizon occlusion culling
is shown in Figure 3.

Figure 3: The red mask represents the current approximation of the visibility horizon updated
with current gridlet’s occlusion profile.

 7

5 Hardware Programming

After the completion of the horizon occlusion culling, each triangle that is visible to the user
is determined. At this stage we have the information about the vertices to be sent to the
rendering pipeline. These information with other required parameters (i.e: texture
coordinates, normals,..) are sent to the programmable graphics hardware and the resultant
image is generated using Graphics Processing Unit (GPU). In this section I make an
introduction to vertex programming. More detailed information can be obtained from
[26],[27] and NVIDIA’s home page (http://www.nvidia.com).

5.1 Vertex Programming

Traditional graphics pipeline consists of four sequential parts:

Each unit has specific functions and modes of operations. Vertex programming enables the
graphics programmer to total control of vertex processing in the Transform and Lighting stage
of the pipeline. It is a kind of customization of the vertex processing. Programmer can:

• Complete control of transform and lighting on hardware,
• Complex vertex operations accelerated in on hardware,
• Custom vertex lighting,
• Custom skinning and blending,
• Custom texture coordinate generation,
• Custom texture matrix operations,
• Custom vertex computations of your choice,

By this way, vertex computations are offloaded from the CPU and more time is left for the
occlusion calculations of the next frame in CPU.

Vertex program uses an assembly language interface in T&L unit. All vertex maths is
performed with the GPU instruction set. It reads an untransformed and unlit vertex and creates
a transformed vertex with optionally creating lights for the vertex, texture coordinates, fog
coordinates, etc.

 8

Vertex program does not create or delete vertices (1 vertex in, 1 vertex out). Moreover, no
topological information is provided (no edge, face or neighboring information). It is
dynamically loadable and exposed through NV_ vertex_ program extension (Figure 4).

Figure 4: This figure shows the place of the vertex program and how it is enabled.

Vertex programs are arrays of Glubytes (“strings”). They are created and managed similar to
texture objects and invoked when glVertex is used.

This section is a brief introduction to vertex programming, for the programming details refer
to [26].

6 Current State and Future Work

Up until now, preliminary knowledge about hierarchical terrains and occlusion horizon
culling algorithm is obtained and implementation of the horizon occlusion-culling algorithm
for hierarchical (quadtree based) terrains is completed. In the current state, I am working on
the hardware programming techniques and making research about the improvements that can
be achieved in rendering times using programmable graphics hardware.

After the completion of the hardware programming part, I will compare the rendering times of
horizon occlusion culling algorithm implemented with hardware programming and the one
implemented without hardware programming techniques. In addition to this, the algorithm
may be adopted to render the urban environments with some small adaptations to the data
structures to include buildings. I will improve Downs [13] work for this adaptation using
hardware.

 9

7 Conclusion

Finding efficient rendering techniques for terrains is an important issue for the simulations
using huge datasets to display environment. In the current state of the art with the
improvement on the graphics cards, the need for realistic rendering of the scene
increased.However, even high memory and speed of new graphic cards cannot afford the
demands for rendering huge size of terrain polygons. Therefore, some simplifications over the
terrain without disturbing the realistic looking are necessary. Level of detail and occlusion
culling algorithms are very suited to find solutions to these kinds of problems.

The main issue on this project is the adaptation of horizon occlusion culling algorithm to
hierarchical terrains. By this way, the polygon count sent to the rendering pipeline is reduced
by the level of detail control and the determination of occluded regions of the terrain. The
navigation over the terrain is enabled in real-time with minimal preprocessing and memory.
The effect of rendering using hardware programming techniques will be seen after the
completion of the project. I expect the rendering times will be decreased significantly after
then.

8 References

[1] L. Brandon,E.Parris, Horizon Occlusion Culling for Real-time Rendering of
Hierarchical Terrains, Bringham Young University, 2001.

[2] J. Airey, J. Rohlf, and F. Brooks Jr. Towards Image Realism with Interactive Update
Rates in Complex Virtual Building Environments. Symposium on Interactive 3D Graphics
1990, pp. 41-50, 1990.

[3] D. Bartz, M. Meibner and T. Hüttner. OpenGL-assisted Occlusion Culling for Large
Polygonal Models. Computers & Graphics, vol. 23, pp. 667-679, 1999.

[4] J. Bittner, V. Havran, and P. Slavik. Hierarchical Visibility Culling with Occlusion
Trees. Proceedings of Computer-Graphics International '98, pp. 207-219, June 1998.

[5] D. Cline and P. Egbert. Interactive Display of Very Large Tex-tures. Proceedings of
IEEE Visualization '98, pp 343-350, October 1998.

[6] D. Cline and P. Egbert. Terrain Decimation through Quadtree Morphing. IEEE
Transactions on Visualization and Computer Graphics, vol. 7 (1), pp. 62-69, 2001.

[7] D. Cohen-Or, Y. Chrysanthou, and C. T. Silva. A Survey of Visibility for
Walkthrough Applications. Proceedings of EUROGRAPHICS '00, Course Notes, 2000.

[8] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative Visibility and
Strong Occlusion for Viewspace Partitioning of Densely Occluded Scenes. Computer
Graphics Forum, vol. 17(3), pp. 243-253, 1998.

[9] D. Cohen-Or, E. Rich, U. Lerner, V. Shenkar. A Real-Time Photo-Realistic Visual
Flythrough. IEEE Transactions on Visualization and Computer Graphics, vol. 2(3), pp. 255-
265, 1996.

 10

[10] S. Coorg and S. Teller. Real-time Occlusion Culling for Models with Large Occluders.
1997 Symposium on Interactive 3D Graphics, pp. 83-90, April 1997.

[11] L. De Floriani and E. Puppo. Constrained Delaunay Triangulation for Multiresolution
Surface Description. Proceedings of Ninth IEEE International Conference on Pattern
Recognition, pp. 566-569, 1988.

[12] M. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller, C. Aldrich, M.B. Mineev-
Weinstein. ROAMing Terrain: Real-time Optimally Adapting Meshes. Proceedings of the
Conference on Visualization '97, pp.81-88. Oct. 1997.

[13] L. Downs, T. Möller, and C. Sequin. Occlusion Horizons for Driving Through Urban
Scenery. 2001 Symposium on Interactive 3D Graphics, pp. 121-124, 256, March 2001.

[14] N. Greene, M. Kass, and G. Miller. Hierarchical Z-Buffer Visibility. Computer
Graphics (Proceedings of SIGGRAPH ‘93), pp. 231-238, 1993.
[15] H. Hey, R. Tobler, and W. Purgathofer. Real-Time Occlusion Culling with a Lazy
Occlusion Grid. Rendering Techniques 2001: 12th Eurographics Workshop on Rendering. pp.
217-222, 2001.

[16] H. Hoppe. Smooth View-Dependent Level-of-Detail Control and its Application to
Terrain Rendering. IEEE Visualization '98, pp. 35-42, Oct. 1998.

[17] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and G. Turner. Real-time,
Continuous Level of Detail Rendering of Heightfields. Computer Graphics (Proceedings of
SIGGRAPH '96), pp. 109-118, 1996.

[18] R. Pajarola. Large Scale Terrain Visualization Using The Restricted Quadtree
Triangulation. Proceedings of IEEE Visu-alization '98, pp. 19-26, 1998.

[19] B. Rabinovich and C. Gotsman. Visualization of Large Terrains in Resource-Limited
Computing Environments. IEEE Transactions on Visulaization and Computer Graphics, pp.
95-102, 1997.

[20] S. Röttger, W. Heidrich, P. Slussallek, and H.-P. Seidel. Real-Time Generation of
Continuous Levels of Detail for Height Fields. Proceedings of the 6th International
Conference in Central Europe on Computer Graphics and Visualization, pp. 315–322, Feb.
1998.

[21] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion. Conservative Volumetric Visibility
with Occluder Fusion. Computer Graphics (Proceedings of SIGGRAPH 2000), pp. 229-238,
July 2000.

[22] J. Stewart. Hierarchical Visibility in Terrains. Eurographics Workshop on Rendering
‘97, pp. 217-228, 1997.

[23] S. Teller and C. Sequin. Visibility Preprocessing for Interactive Walkthroughs.
Computer Graphics (Proceedings of SIG-GRAPH ‘91), pp. 61-69, 1991.

 11

[24] B. Zaugg and P. Egbert. Voxel Column Culling: Occlusion Culling for Large Terrain
Models. VisSym 2001-Eurographics/ IEEE Symposium on Visualization, pp. 85-93, May
2001.

[25] H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visibility Culling using Hierarchical
Occlusion Maps. Computer Graphics (Proceedings of SIGGRAPH ‘97), pp. 77-88, 1997.

[26] N. Scott, D. Olsen, and E. Gannett. An Overview of the VISUALIZE fx Graphics
Accelerator Hardware. The Hewlett-Packard Journal, (May):28–34, 1998.

[27] Hewlett-Packard. Occlusion Test, Preliminary.
http://www.opengl.org/Developers/Documentation/Version1.2/ HPspecs/occlusion test.txt,
1997.

http://www.opengl.org/Developers/Documentation/Version1.2/

	HORIZON OCCLUSION CULLING FOR REAL-TIME RENDERING OF HIERARCHICAL TERRAINS USING PROGRAMMABLE GRAPHICS HARDWARE
	Middle East Technical University

	Abstract
	Table Of Contents
	Introduction
	Related Work
	Terrain Rendering Algorithm
	Horizon Occlusion Culling
	Front-to-Back Ordering
	Occluders and Occludees
	Horizon Representation

	Hardware Programming
	Vertex Programming

	Current State and Future Work
	Conclusion
	References

