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Abstract 
 

Terrain visualization is a difficult problem for applications requiring accurate images 
of large datasets at high frame rates, such as flight simulation and ground-based aircraft 
testing using synthetic sensor stimulation. The main problem is to maintain dynamic, view-
dependent triangle meshes and texture maps that produce good images at the required frame 
rate. This report describes a technique to improve the horizon occlusion-culling algorithm for 
hierarchical terrains using programmable graphics hardware techniques so that the 
hierarchical terrains could be rendered in real-time efficiently. The occlusion horizon is a 
well-known algorithm. The main issue of this work is the adaptation of this algorithm to 
hierarchical terrains. The algorithm will be implemented with the usage of programmable 
graphics hardware to accelerate the rendering time. The chosen occlusion algorithm is simple 
to implement and requires minimal pre-processing and additional storage. The occlusion 
horizon is constructed as the terrain is traversed in an approximate front to back ordering. 
Regions of the terrain are compared to the horizon to determine when they are completely 
occluded from the viewpoint. Quad trees are selected to construct the hierarchical structure 
for the terrains. By this work, the improvement of rendering time using hardware 
programming techniques for occlusion culling on hierarchical terrains will be observed. 
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1 Introduction 
 
Real-time navigation of detailed terrain model is important for many applications. Since the 
early days of computer graphics, the military has used flight simulators to train pilots. Flight 
simulators for commercial airlines soon followed. Simulator technology inevitably made its 
way into video games. Today real-time terrain navigation routinely used in other applications 
such as visualizing a proposed road construction project or data captured by a satellite. The 
quality of these applications often depends on the size and detail of the terrain models. 
 
The huge size of terrain models presents several problems. Large models require a lot of 
memory. Models covering only a few square miles can consist of millions of polygons. 
Texture-maps for terrain models usually have a high resolution in order to provide sufficient 
detail at close proximity, which makes them very large. Often only part of the model can fit in 
memory at any time. Rendering large terrain models at real-time frame rates can be 
challenging. While rendering hardware has made great advances in recent years, even the best 
hardware can render only a few million polygons per second. Memory bandwidth limitations 
restrict the amount of texture that can be rendered to a few hundred megabytes per second. 
These limitations are not a problem when the viewer is close to the ground looking down 
because large portions of the model fall outside the view frustum and may be culled away. 
However, when the viewer is looking at the model from high altitude or is looking out 
horizontally at ground level, arbitrarily large portions of the model may be visible. Since it is 
currently not possible to render millions of polygons with many megabytes or even gigabytes 
of texture at high frame rates, rendering large terrain models in real-time requires specialized 
algorithms. 
 
One solution is to render the terrain using an adaptive level of detail (LOD). Features in the 
distance do not need to be rendered with the same fidelity as those that are close to the viewer. 
A smaller, coarser representation may be used for distant features without any noticeable 
degradation of image quality. Hierarchical terrain representations such a quadtrees are 
especially well suited for adaptive LOD and have been used extensively in computer graphics 
and GIS systems. Quadtrees facilitate choosing a representation with an appropriate resolution 
for different parts of the model. Adaptive LOD can drop the number of polygons in a given 
frame from millions down to tens of thousands. Adaptive LOD yields similar exponential 
reductions in the amount of texture required for a given frame. This is because fewer, lower 
resolution texture maps can be used to cover large portions of the model. 
 
While adaptive LOD dramatically reduces the polygon count for both high altitude views and 
horizontal views close to the ground, the polygon counts for horizontal views remain 
considerably higher than those for other views. This is a characteristic of terrain models. 
When viewed from above, all of the geometric detail becomes compressed in the viewing 
direction, so a coarser LOD may be used. Horizontal views require a finer resolution to 
capture the details of the terrain profiles, which leads to a higher polygon count. This is 
unfortunate because these views tend to be very common in 3D terrain visualization 
applications. However, the rough features of a terrain that require an increased polygon count 
also afford an opportunity for optimization, since they often occlude large portions of the 
terrain model. Occluded regions need not be drawn because they make no contribution to the 
final image. Figure 1 shows the reduction in rendered geometry due to occlusion culling. 
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Figure 1: Top-left, view of a terrain without occlusion culling. Top-right, occlusion culling is 
enabled. The bottom row shows the terrain elements drawn for the corresponding views in the 
top row. 
 
While some work has been done to perform occlusion culling for terrains, most algorithms 
pre-compute visibility and require significant pre-processing and storage. In this report I 
explain an algorithm to compute occlusions in terrains on the fly. It is based on a well-known 
technique. With a height field, anything below the horizon line occluded. By tracking the 
horizon line of the height field as it is rendered in front-to-back order, self-occlusions within 
the height field may be detected. The horizon effectively fuses the occlusion of many 
individual parts of the terrain. Terrain elements that fall completely below the horizon are 
culled. The rest of the terrain elements are sent to the rendering pipeline and rendered using 
programmable hardware. Their information is used to update the visibility horizon as it 
sweeps through the scene. The improvement done in this work is the application of the 
occlusion horizon to hierarchical terrains using programmable graphics hardware. The 
algorithm requires minimal pre-processing and additional memory. Hardware programming 
techniques are used in the implementation. 
 
After briefly discussing work related to this subject in Section 2, I give an overview of the 
terrain-rendering algorithm I use in Section 3. Section 4 explains the details of the occlusion-
culling algorithm. In Section 5, I introduce the usage of the programmable graphics hardware 
for this work. Finally I make some concluding comments and discuss directions for future 
work. 
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2 Related Work 
 
There is a vast amount of research in the area of visibility and occlusion culling. An excellent 
survey of visibility techniques is provided by Cohen-Or et al [7]. Visibility algorithms can 
determine visibility either in a precomputation step or on the fly. Precomputed visibility 
algorithms pre-process a scene to determine which objects are visible from points or regions 
in space. At run time, only the objects in the pre-calculated set of visible objects for the 
current viewpoint are drawn. This can result  in enormous savings when the size of the set of 
visible objects is small compared to the number of objects in the scene. The major drawbacks 
of pre-processing algorithms are that they are limited to static scenes, they can require a lot of 
storage space to store the visibility information, and the pre-processing step can be very time 
consuming. These algorithms have been successfully applied to indoor scenes because these 
environments are static and the potentially visible sets are usually small [2,23]. Cell-based 
precomputed visibility algorithms have been applied to outdoor scenes [8,24]. Schaufler et al. 
[21] present a general algorithm based on voxelization of occluders, which can also be applied 
to terrains. Stewart [22] precomputes visibility for hierarchical terrains. A representation of 
the visibility horizon is created for each vertex of the terrain in a pre-processing step. This 
information is used at run-time to determine whether a particular vertex is occluded from the 
current viewpoint.  
 
Another class of occlusion algorithms calculates occlusions on the fly. Green et al. [14] and 
Zhang et al. [25] use hierarchical data structures to calculate occlusions on the pixel level. 
Bartz et al. [3] use hierarchical spatial subdivision and OpenGL features to detect occlusions, 
thus taking advantage of graphics hardware. Hey et al. [15] use a low-resolution grid in 
combination with an occlusion buffer or z-buffer that is updated in a lazy manner order to 
reduce the cost of expensive pixel level queries. Coorg and Teller [10] classify large 
occluding polygons and use the support planes of these polygons to determine occlusion of 
other objects in the scene. Bitner et al. [4] propose a similar algorithm that uses a BSP data 
structure to merge occluders. Both of these methods require large polygons to be used as 
occluders. Since terrains typically consist of many small polygons, neither of the algorithms is 
suitable for terrain rendering. 
 
Occlusion horizons can be used to render 2D-functions and height fields. Downs et al. [13] 
show how to use an occlusion horizon for urban environments. The proposed algorithm in this 
report uses an occlusion horizon and thus is similar in many ways to theirs. However, I use an 
occluder representation that is better suited for large terrains. Moreover, the horizon 
representation I use is much simpler. 
 
Hierarchical terrain models may be built on top of a uniform rectangular grid in the form of a 
quad tree or a restricted quad tree, also called a bintree. When you go over the LOD 
Algorithms, you find out that there are mainly three different approaches [16][17][12]. In 
[16], Hugues Hoppe presents an algorithm based on Progressive Meshes, a relatively new 
technique for adding triangles to arbitrary meshes, as you need more detail. It is a good paper 
but a bit difficult. Moreover, it requires high memory requirements than the other two 
algorithms [12] and [17]. The second paper [2] Lindstrom et al. presents a Quad Tree 
structure that is used to represent a patch of landscape. A Quad Tree recursively tessellates the 
landscape creating an approximation of the Height Field. Quad Trees are very simple and 
efficient. Finally, in [12] Duchaineau et al. presents an algorithm (Real-time Optimally 
Adapting Meshes) based on a Binary Triangle Tree structure. Here each patch is a simple 
isosceles right triangle. Splitting the triangle from its apex to the middle of its hypotenuse 
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produces two new isosceles right triangles. The splitting is recursive and can be repeated on 
the children until the desired level of detail is reached.  Hierarchical terrains may also be built 
upon irregular triangle meshes. Since more freedom can be used in selecting the location of 
vertices, it is often possible to represent a terrain with fewer triangles with these methods than 
with those based on regular grids. Examples of these types of terrains include Delaunay 
triangulations [11,19] and view dependent progressive meshes [16]. Terrains can also be 
rendered efficiently using voxels [9]. 
 
Finally, I present the main references about programmable graphics hardware. Hewlett-
Packard proposed an overview of VISUALIZE fx Graphics Accelerator Hardware [26] and an 
extension to OpenGL providing an occlusion query based on a flag [27]. 

3 Terrain Rendering Algorithm 
 
I used a variation of quadtrees described by Cline and Egbert [6]. The advantage of their 
method is that it eliminates the noticeable ‘pop’ that occurs when the level of detail changes 
suddenly. The technique is called as ‘q-morphing’ (quadtree morphing) that perform a smooth 
morph between adjacent levels of detail. 
 
The algorithm contains a quadtree with small grids called gridlets at the nodes. The resolution 
of each gridlet may change, however their spatial size is fixed. The quadtree is traversed top-
down to decide which gridlet to draw. First, the visibility is checked for each gridlet against 
the view frustum. A gridlet lying totally outside the viewing frustum is discarded along with 
all its children. If projected screen radius of a gridlet falls below a user specified treshold, it is 
added to the drawing list. Otherwise, the traversal continues with its children. Once a gridlet 
is placed in the drawing list, a screen-space error metric and the local surface roughness are 
used to compute an LOD parameter describing how finely the gridlet should be decimated in 
order to satisfy user specified error bounds. The LOD parameters for both the current gridlet 
and its parent are combined in such a way that the parameter varies smoothly as position 
changes. The integer part of the parameter is used to pick a subdivision level. The fractional 
part is used to morph from one subdivision level to the next. Please refer [5] for the details of 
the calculation of LOD parameters. 

4 Horizon Occlusion Culling 
 
Gridlets are first tested against the view frustum. The gridlets that are inside the viewing 
frustum are then tested against the current visibility horizon. The horizon is constructed by the 
highest points in the screen space projection of the terrain, rendered thus far. The projection of 
the gridlet is checked against the horizon and if it falls below that horizon, it is guaranteed to 
be hidden and culled along with all its children. If any part of the gridlet lies above the 
horizon, the horizon is updated with the gridlet’s occlusion profile and the gridlet is added to 
the drawing list. 
 
Occlusion horizon algorithms, in general, consist of three main parts: 

•  Front to back ordering of the scene elements, 
•  Simplified representations of the scene elements for the calculations of the occlusions 

efficiently, 
•  A representation for the visibility horizon. 

In the following sections, each of these components is described briefly. 
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4.1 Front-to-Back Ordering 
 
The horizon occlusion-culling algorithm works only if the objects are rendered in front-to-
back order. In my representation I have a hierarchical structure for the grids, which is a 
quadtree. Therefore, the correct traversal order is enough for front-to-back ordering. What is 
the correct traversal order then? A correct traversal order of the gridlet children only need to 
ensure that each child is rendered before its siblings that it may occlude. It depends on the 
slope of the line through the gridlet center from the viewing position. The traversal order is 
stored in a simple array for each quadrant. 
 

4.2 Occluders and Occludees 
 
The efficiency of the visibility test is very important for this application, because it is 
performed many times per frame. Hence, simple approximations to the terrain elements are 
more suitable for tests instead of the original terrain elements. There are two simplifications 
for a terrain element, occludees and occluders. The occludee is a conservative over-estimation 
of the extents of an object used for the visibility test. Over-estimation of the object ensures that 
when occludee is below horizon line, object itself is guaranteed to be below the horizon. 
However, for some cases, the occludee can be marked as visible while object is below the 
horizon. That time object is rendered unnecessarily, but this does not change the final image. 
The occluder is the conservative under-estimation of the occlusion profile of the object, which 
is used to update the horizon.  
 
For my implementation I used single line-segments as in [1] to approximate the edges of the 
gridlet as the occluder representation. Each line segment requires only two height values and 
only the top two or three of these segments have to be tested against per gridlet, depending on 
the orientation of the gridlet with respect to the viewer. The line that is generated with the 
edge points of the gridlet is shifted down so that, all edge points lie above it to ensure that the 
occluder edge is conservative. The edge points at the finest decimation level for the gridlet is 
used for the gridlet to guarantee that the occluder edge valid for all levels of detail. If finest 
decimation level is not chosen, then the conservative property of the occluder may not be 
satisfied, since morphing to a higher resolution may cause the edge to dip below the occluder 
line.  
 
Sample occlusion profiles are given in Figure 2. As it is seen, there are some limitations for 
the occluder edges. They cannot catch for the occlusions caused by raised portions in the 
center of the gridlet and for the gridlet with curved edges. 
 
Axis-aligned bounding boxes are good and practical approximations for the occludee 
representation. Only the top-most edges of the bounding boxes need to be compared to the 
horizon.  
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Figure 2: Gridlets with occluder edges and their occlusion profiles. The gridlet on the right is 
an example of a poor approximation of the actual gridlet edge by the occluder. 
 

4.3 Horizon Representation 
 
The occlusion horizon is an array of size of the resolution of the image. Each element of the 
array represents a vertical column of the image. Height of each column is stored in this array. 
A horizon update is performed by scan-converting the projected occluder edges into the array, 
recording the height of the edge at each column whenever it is greater than the column’s 
current height. If the occludee edge is higher than the horizon at any point, than the scene 
object is marked as visible. An example for the visualization of the horizon occlusion culling 
is shown in Figure 3. 
 

 
 
Figure 3:  The red mask represents the current approximation of the visibility horizon updated 
with current gridlet’s occlusion profile. 
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5 Hardware Programming 
 
After the completion of the horizon occlusion culling, each triangle that is visible to the user 
is determined. At this stage we have the information about the vertices to be sent to the 
rendering pipeline. These information with other required parameters ( i.e: texture 
coordinates, normals,..) are sent to the programmable graphics hardware and the resultant 
image is generated using Graphics Processing Unit (GPU). In this section I make an 
introduction to vertex programming. More detailed information can be obtained from 
[26],[27] and NVIDIA’s home page (http://www.nvidia.com). 
 

5.1 Vertex Programming 
 
Traditional graphics pipeline consists of four sequential parts: 
 

 

 
 

 
 

Each unit has specific functions and modes of operations. Vertex programming enables the 
graphics programmer to total control of vertex processing in the Transform and Lighting stage 
of the pipeline. It is a kind of customization of the vertex processing. Programmer can: 

•  Complete control of transform and lighting on hardware, 
•  Complex vertex operations accelerated in on hardware, 
•  Custom vertex lighting, 
•  Custom skinning and blending, 
•  Custom texture coordinate generation, 
•  Custom texture matrix operations, 
•  Custom vertex computations of your choice, 

 
By this way, vertex computations are offloaded from the CPU and more time is left for the 
occlusion calculations of the next frame in CPU.  
 
Vertex program uses an assembly language interface in T&L unit. All vertex maths is 
performed with the GPU instruction set. It reads an untransformed and unlit vertex and creates 
a transformed vertex with optionally creating lights for the vertex, texture coordinates, fog 
coordinates, etc. 
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Vertex program does not create or delete vertices (1 vertex in, 1 vertex out). Moreover, no 
topological information is provided (no edge, face or neighboring information). It is 
dynamically loadable and exposed through NV_ vertex_ program extension (Figure 4). 

 
 
Figure 4: This figure shows the place of the vertex program and how it is enabled. 
 
Vertex programs are arrays of Glubytes (“strings”). They are created and managed similar to 
texture objects and invoked when glVertex is used.  
 
This section is a brief introduction to vertex programming, for the programming details refer 
to [26]. 

6 Current State and Future Work 
 
Up until now, preliminary knowledge about hierarchical terrains and occlusion horizon 
culling algorithm is obtained and implementation of the horizon occlusion-culling algorithm 
for hierarchical (quadtree based) terrains is completed. In the current state, I am working on 
the hardware programming techniques and making research about the improvements that can 
be achieved in rendering times using programmable graphics hardware.  
 
After the completion of the hardware programming part, I will compare the rendering times of 
horizon occlusion culling algorithm implemented with hardware programming and the one 
implemented without hardware programming techniques. In addition to this, the algorithm 
may be adopted to render the urban environments with some small adaptations to the data 
structures to include buildings. I will improve Downs [13] work for this adaptation using 
hardware. 
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7 Conclusion 
 
Finding efficient rendering techniques for terrains is an important issue for the simulations 
using huge datasets to display environment. In the current state of the art with the 
improvement on the graphics cards, the need for realistic rendering of the scene 
increased.However, even high memory and speed of new graphic cards cannot afford the 
demands for rendering huge size of terrain polygons. Therefore, some simplifications over the 
terrain without disturbing the realistic looking are necessary. Level of detail and occlusion 
culling algorithms are very suited to find solutions to these kinds of problems.  
 
The main issue on this project is the adaptation of horizon occlusion culling algorithm to 
hierarchical terrains. By this way, the polygon count sent to the rendering pipeline is reduced 
by the level of detail control and the determination of occluded regions of the terrain. The 
navigation over the terrain is enabled in real-time with minimal preprocessing and memory. 
The effect of rendering using hardware programming techniques will be seen after the 
completion of the project. I expect the rendering times will be decreased significantly after 
then.  
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