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Abstract 
It has been tried to overcome the limitations of classical logic with 
using causal links between logical facts. Real world is too complex to 
model or define exactly all the relations so some intelligent inference 
mechanisms are needed to ignore the unimportant dynamics while 
watching carefully the essential action and effects. These desires are 
overcome with the introduction of nonmonotonic formalisms. In this 
paper two known nonmonotonic formalisms Action Languages and 
Event Calculus will be reviewed and compared according to their inner 
representations and expresiveness. 
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1. Introduction 
Artificial Intelligence and Logic science fields are cooperating tightly to 
overwhelm some open problems of the literature. Especially the artificial 
intelligence field of computer science is benefiting from the logic concepts on the 
solving of some of its sub fields like planning, knowledge representation, 
deduction for expert systems, and classification of concrete relational information. 

Main reason for this interaction is the power of the deduction mechanisms of the 
Logic. They are found to be useful on solving logical relations under some 
constraints like completeness of the domain of problem or closed world 
assumptions. If a problem is clearly expressed as a series of logical expressions 
obeying the constraints that constitutes the limits of computation then logical 
inference systems are clearly an option. 

Modern logical programming is studied under two sub fields. Elements of the first 
group shares monotonic approaches. A logical system is monotonic if the truth of 
a proposition does not change when new information is added to the system. 
Rules, predicates and default axioms define the operation set. Also with some 
inference algorithm deduction engine is supplied. Some constrains and 
assumptions are necessary like uniqueness of the name of axioms and predicates 
or the closure of the problem domain. 

Monotonic logic has been quite successful on various problems. Logicians have 
contended that reasoning, as performed by humans, is also amenable to analysis 
using classical logic. However, workers in the field of artificial have shown that 
classical logic is not sufficiently robust to adequately reason as humans do. 
Humans do not always reason as would a classical reasoning system. They leap to 
conclusions based on commonsense reasoning. By commonsense reasoning 
humans generally refer to such statements: 

• “it is my experience that this must be the case” 

• “there is no good reason not to believe this” [1] 

• “following the listed assertions this should be necessarily the case” 

• “it might be possible that the this is the case”  

The subject of the second sub field of logical programming, called nonmonotonic 
reasoning is based on a model that shares the commonsense view of world. It is 
mainly based on classical logic. McCarthy [2] was perhaps the one who first 
brings this issue into world of computer science and programming. He introduced 
the idea of necessity of an automated commonsense reasoning.  
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2. Nonmonotonic Reasoning 
Since our primary concern is nonmonotonic reasoning, it will be discussed in a 
different section here. This papers area of interest that is the Action Languages 
and Event Calculus are instances of such reasoning. Both of them try to solve the 
uncompleted problem domains by using their commonsense reasoning axioms 
summed up with special operators and of course with classical logic definitions. 
In other words, they share common grounds of classical logic but also they 
introduced some extension axioms to it in order to deduce. 

The motivation and necessity behind these nonmonotonic reasoning systems is 
well defined in studies of McCarthy and Hayes [3]. In their study, limits of a 
Turing machine on the edge of implementing a philosophical reasoning system 
are discussed. According to the authors, an entity is intelligent if it has an 
adequate model of the world (including the intellectual world of mathematics, 
understanding of its own goals and other mental processes), if it is clever enough 
to answer a wide variety of questions on the basis of this model, if it can get 
additional information from the external world when required, and can perform 
such tasks in the external world as its goals demand and its physical abilities 
permit [3]. 

Building such an autonomous agent with classical logics is just impossible 
because there is no way of expressing every situation or transition that may occur 
in real life without making overgeneralizations. Real world is just too complex to 
express. Despite these facts assume that it is expressed in a theoretical aspect then 
yet there is another problem: it would be very hard to find answers from such a 
huge logical database of relations. 

Another problem with such a huge amount of rules (also called frame axioms) is 
to keep it consistent because we know that, classical logics would work only if the 
set of rules that yields to the decisions are consistent. For that reason some kind of 
tolerance is necessary when inconsistent observations or even contradictions are 
met. One way of overwhelming such a situation is using probabilistic or Action- 
Value approach.  

In this approach the causalities are not just memorized but kept in an experience 
pool with certain probability. Such a system can be best visualized with help of 
nondeterministic automata. For simplicity, assume the agent is put on a closed 
environment with an initial automaton. This automation contains some of the 
states of a full set that contains all possible valuations of variables that are fully 
observable by the agent in the environment including the agent itself. According 
to the goal given to the agent, it would act as it is desired by using the automaton 
and taking the transitions in a somewhat nondeterministic way using the 
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probabilities assigned to the transitions (choosing the action that yields to the goal 
considering the probably values). 

Since the environment is continuously observed by the agent some states and 
actions can be experienced by the agent that are not initially supplied to it because 
agent might not be the only interacting element in the closed environment or just 
because the causes of the subset of all actions given initially to the agent are not 
completely supplied to the agent. In such cases agent should add the new states 
and the actions that links the current state and the newly added states with a 
probability of 1 for instance (probabilities can be updated as the action is met 
again from the same state). Newly added states would have no transitions out the 
state so most common state which is the most closest one according to the 
valuations of variables (or fluents as it will be discussed later) in the automaton 
might be chosen and can be act as if it is the current state. A possible 
improvement when a new state is met can be undoing the latest action when 
possible with a certain probability. 

In this example of nonmonotonic system, the transitions could be the logical rules 
and the states can be a vector of the asserted facts. With addition of intuitive 
probabilistic action choosing strategy rules, a forward (linear) resolution system 
would behave in a commonsense deduction mechanism. What makes this system 
nonmonotonic is the ability to add rules to its world representation. 

Best known nonmonotonic logics are circumscription [4, 5, 6], default logic [7], 
non monotonic modal logics [8, 9, 10], event calculus [11] and action languages 
[12]. In this paper two of them, event calculus and action languages will be 
presented and compared according to their similarities and differences. 

3. Frame Problem 
The original frame problem tends to appear in nonmonotonic systems that adhere 
incomplete models of a changing world.  In such systems there are axioms about 
changes conditional on prior occurrences. An example is that switching the 
window button of car opens the window of it and that turning on the lamp of the 
car changes the illumination of it. Unfortunately, since inferences are to be made 
only by deduction, axioms are needed for expressing non changes that is 
switching the button does not change the illumination and that turning on the lamp 
does not change the state of window.  Without such frame axioms a system is 
unable clearly deduce that any states persist.  The resulting problem is to come up 
with an answer without introducing huge numbers of frame axioms potentially 
relating each changeable variable to each unchangeable one. 
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A common response is to handle unchangeable variables implicitly by allowing 
the system to assume by default that a state persists, unless there is an axiom 
specifying that it is changed by an occurrence, given surrounding conditions.  
Since such assumptions are not deducible from the axioms of change (even given 
surrounding conditions), and since the given known conclusions are not 
cumulative as evidence is added, the frame problem helps motivate the 
development of nonmonotonic logics intended to minimize the assumptions that 
must be retracted given further evidence as told before.  This is related to 
discussions of defeasibility and ceteris paribus reasoning in epistemology and 
philosophy of science [13]. 

A well known challenge for nonmonotonic reasoning is to determine which 
assumptions to retract when necessary, as in the Yale Shooting Problem [14].  Let 
a system (or program) assume by default:  

1. There is a loaded gun to shoot and loaded guns remains loaded. 

2. There is an alive person as target and alive person remains alive. 

3. Target is alive. 

4. Gun is loaded 

5. After a short sneeze, gun is fired to the target. 

In the light of these facts there can be two results. If the first fact is in question 
through the delay of sneezing then second fact is violated by the target. If second 
fact is in question through the delay then first fact is violated by the target. 
Intuitively human can conclude that it is more reasonable to enforce the second 
fact. Some scientists believe that first fact is still holding because there was an 
indefinite delay before the shooting action [15]. While others say that there is no 
sign that that to believe the second fact is violated while shooting means 
something to us as second fact is violated [16, 17, 18]. Here the problem is not 
being fully depicted the action world; some additional facts can be inserted 
without sticking to the classical logical rules and facts. 
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4. Event Calculus 
As stated before, Event Calculus is a nonmonotonic formalism to represent action 
and effect changes to the world of interest. It avoids the representational frame 
problem, a special kind of frame problem that deals proliferation of the frame 
axioms (axioms that defines the changes) by using its own axioms and formalism. 

Computer programs that take decisions about how they or other agents should act, 
uses some form of representation of the effects of actions, both their own and 
those of other agents. In order to maintain a solid theoretical base for the design of 
these programs there is the need for logical formalisms for representing action, 
which, although they may or may not be realized directly in computer programs. 

4.1 Event Calculus Basics  

4.1.1 What the Event Calculus Does 

The event calculus is a logical mechanism that derives what’s true when given 
what happens when and what actions do. The story of events constitutes the “what 
happens when” part, and the description of the effects of actions constitutes the 
“what actions do” part.  

 

Figure 1: How the Event Calculus Functions 

Logical 
Machine 

What happens when 

What actions do 

What is true when
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4.1.2 The Semantic of the Event Calculus 

The event calculus adopts an approach of introducing suitable predicates and 
functions for representing the kind of action-related information built on first-
order predicate calculus. 

The first issue in designing the first-order language is determining the ontology, 
that is to say the types of things over which quantification is allowed. The 
underlying ontology of the event calculus consists of actions or events (or rather 
action or event types), fluents and time points. A fluent is anything whose value is 
subject to change over time. The temperature in the room, whose numerical value 
is subject to variation, is an example of type fluent. 

Another issue in designing the first-order language is determining the set of basic 
predicates. Table 1 presents the language elements of  the simple event calculus. 

Formula Meaning 
Initiates(α, β, τ) Fluent β starts to hold after action α  at time τ 
Terminates(α, β, τ) Fluent β ceases to hold after action α  at time τ 
InitiallyP(β) Fluent β holds from time 0 
τ1 < τ2 Time point τ1 is before τ2 
Happens(α, τ) Action α occurs at time τ 
HoldsAt(β, τ) Fluent β holds at time τ 
Clipped(τ1, β, τ2) Fluent β is terminated between times τ1 and τ2 

Table 1: Some Event Calculus Predicates 

4.1.3 The Axioms of the Simple Event Calculus 

The following is a suitable collection of axioms relating the various predicates 
together: 

HoldsAt(f,t) ← ¬ InitiallyP(f) ^ ¬ Clipped(0,f,t)                          (SC1) 

A fluent holds at a time t if it held at time 0, and hasn’t been terminated between 0 
and t: 

HoldsAt(f,t2) ← 

Happens(a,t1) ^ Initiates(a,f,t1) ^ t1 < t2 ^ ¬ Clipped(t1,f,t2)    (SC2) 
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A fluent holds at time t if it was initiated at some time before t and hasn’t been 
terminated between then and t: 

Clipped(t1,f,t2) ↔ 

∃ a,t [Happens(a,t) ¬ t1 < t < t2 ¬ Terminates(a,f,t)]                (SC3) 

According to these axioms, a fluent does not hold at the time of the event that 
initiates it but does hold at the time of the event that terminates it. Put differently, 
the intervals over which fluents hold are open on the left and closed on the right. 
Naming the conjuction of these axioms as SC will be usefull for further usage in 
this text. 

4.2 The Frame Problem in the Event Calculus  

The frame problem comes up with the question trying to find a way to use logic to 
represent the effects of actions, without having to explicitly represent all their 
non-effects. Yale shooting scenario will be considered to see how this problem 
arises in the context of the event calculus. 

4.2.1 The Yale Shooting Scenario 

In Yale shooting domain there are three types of action, namely a Load action, a 
Sneeze action, and a Shoot action, and three fluents, namely Loaded, Alive and 
Dead. The effect of a Load action is to make Loaded hold. A Shoot action makes 
Dead hold and Alive not hold so long as Loaded holds at the time. A Sneeze 
action has no effects.  Following is formalized representation of these effects.  

Initiates(Load,Loaded,t)     (Y1.1)  

Initiates(Shoot,Dead,t) ← HoldsAt(Loaded,t)  (Y1.2)  

Terminates(Shoot,Alive,t) ← HoldsAt(Loaded,t)  (Y1.3)  

The Yale shooting scenario comprises a series of actions of a Load action, a 
Sneeze action and a Shoot action happening respectively. Following is the 
formalized representation of this series of actions.  

InitiallyP(Alive)      (Y2.1)  

Happens(Load,T1)      (Y2.2)  

Happens(Sneeze,T2)      (Y2.3)  

Happens(Shoot,T3)      (Y2.4)  
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T1 < T2       (Y2.5)  

T2 < T3       (Y2.6)  

T3 < T4       (Y2.7)  

Now let S be the conjunction of (Y1.1) to (Y1.3), and let D be the conjunction of 
(Y2.1) to (Y2.7). Intentionally we should have,  

∑ ^ ∆ ^ SC ╞ HoldsAt(Dead,T4).  

Unfortunately this resultant is not valid. This is due to the lack of the explicit 
descriptions of the non-effects of actions. Specifically, there does not exist the 
statement of the fact that the Sneeze action doesn’t unload the gun. So there are, 
for example, models of SC ^ ∑ ^ ∆ in which Terminates(Sneeze,Loaded,T2) is 
true, Holds(Alive,T4) is true, and HoldsAt(Dead,T4) is false.  

In fact, we should consider the possibilities that we must rule out before we have a 
theory from which the intended conclusions follow. We must also describe the 
non-occurrence of actions. And, more trivially, we must include formulae that rule 
out the possibility that, say, the Sneeze action and the Shoot action are identical. 
This issue is easily dealt with. When describing the effects of actions, we always 
need to include a set of Uniqueness of Names axioms for fluents and actions. In 
our case, we have the following formulae, which use a notation taken from [25]. 
These entail that Load ≠ Sneeze, Loaded ≠ Alive, and so on.  

UNA[Load, Sneeze, Shoot] (Y3.1)  

UNA[Loaded, Alive, Dead] (Y3.2)  

4.2.2 Using Predicate Completion 

In order to express the non-effects of actions and the non-occurrence of events the 
completions of the Initiates, Terminates and Happens predicates can be provided. 
Formulae (Y1.1) and (Y1.2) are replaced by the following.  

Initiates(a, f, t) ↔               (Y4.1)  

[a = Load ^  f = Loaded] ^ [a = Shoot ^ f = Dead ^ HoldsAt(Loaded, t)]  

Terminates(a, f, t) ↔ a = Shoot ^ f = Dead ^ HoldsAt(Loaded, t) (Y4.2)  
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We retain formulae (Y2.1) and (Y2.5) to (Y2.7). (Y2.2) to (Y2.4) are replaced by 
the completion of the Happens predicate.  

InitiallyP(Alive)                                                                                   (Y5.1)  

Happens(a, t) ↔  

[a = Load ^ t = T1] ^ [a = Sneeze ^ t = T2] ^ [a = Shoot ^ t = T3] (Y5.2) 

T1 < T2                                                                                              (Y5.3)  

T2 < T3                                                                                              (Y5.4)  

T3 < T4                                                                                              (Y5.5)  

Now let W be the conjunction of (Y3.1) and (Y3.2), let S be the conjunction of 
(Y4.1) and (Y4.2), and let D be the conjunction of (Y5.1) to (Y5.5). Now, as 
desired, we have,  

∑ ^ ∆ ^ SC ^ Ω╞ HoldsAt(Dead,T4).  

Here the core of a satisfactory solution to the frame problem is introduced. 
Generally, though, especially in non-trivial domains, it’s desirable to have some 
logical mechanism that automatically constructs the completions of the Initiates, 
Terminates and Happens predicates from individual clauses like those in (Y1.1) to 
(Y1.3) and (Y2.2) to (Y2.4). As well as being notationally more convenient, this 
allows the construction of a more modular theory. It also makes our theories more 
elaboration tolerant [26], that is to say new actions, new fluents, new effects of 
actions, and new event occurrences can easily be adapted by an extant theory [11]. 

5. Action Languages: 
It is another methodology similar to the Event Calculus which deals with the 
problem domain with its own causal links. Idea of this language is driven by 
Texas Action Group, a group of researchers interested in the study of formal and 
automated reasoning about the effects of actions using action languages, logic 
programming under the answer set semantics, and related ideas. Ideas are first 
presented in the studies of V. Lifschiltz and M. Gelfond [21, 22] who lead the 
Texas Action Group till the moment of the preparation of this paper.  

This formalism is an extension to the situation calculus like Event Calculus to 
overwhelm the deficiencies of it as presented by the owners of the study [23]. The 
layout of the studies of Action Language and its other implications can be 
collected under several sub group of task. 
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5.1 Action Languages, Translations and Query Languages 

In the first group a world representation language is defined. In this language 
physical variation and changes are described by the elements of the language. Its 
syntax is close to logical programming language. When a program defined in this 
language, it could be said that a general representation of the world is obtained. 
Throughout the evolution of the Action Languages several versions are declared 
by the pioneers of the study and a review of these studies can be obtained from 
[12].  

Initial version was language A. It is well equipped to express causal links 
therefore useful for action domains. In this paper, this language will be provided 
because it is suitable for comparison with Event Calculus. Later on, language B is 
declared, which is an extension of A equipped with additional capability of 
expressing indirect effects of actions. Final language called C, is somewhat more 
expressive than B but not a direct superset of it. It has an ability to express 
nondeterministic actions and concurrent actions. Also inertia which is a built-in 
axiom for B is not enforced for all fluents and can be overridden if it is desired. 

After being defined the Action Language, there has to be a translation scheme 
from this language to the language of ordinary and extended first order logic 
(clearly speaking logic programming world). Via this translation scheme, logic 
programming tools or other formalisms are made available for action languages as 
inference engines. This translation scheme is going to be depicted in this paper 
also. 

Finally another task active under these studies are querying languages. There are 
two querying language defined so far [12]. First one is called P, and it is used for 
describing temporal projection of a specific state to obtain information about 
effects of sequential execution of actions in this state. Other one is called Q and it 
is for the actions that have been already executed. These two languages are not 
going to be mentioned here also because of not having a direct correspondence 
from the Event Calculus formalism. 
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5.2 Action Language A 

In fact, this language is created under the light of inspirations from STRIPS 
formalism. STRIPS is one of the early attempt to solve Frame Problem and it is 
first defined in [24]. General notion of the strips is the inertia it uses. In this 
language a static axiom guaranties that a fluent does not change its value unless an 
action has taken place that could change the value of it. 

In language A, effects of an operator of language STRIPS, which is a causal link 
that connects causing fluents to the effected facts, is redefined so that the results 
of an operator can be conditional [25].  

5.2.1 Definitions: 

Two kinds of propositions exist in this language. A Value Proposition specifies 
the value of a fluent in a particular situation. It can be in initial situation or after 
some actions it can have another value from the set of available values. An Effect 
Proposition defines the effects of an executed action on a fluent.  

According to this language, every problem domain contains two sets. First set is 
the fluent names and the second set is the action names set. A Fluent Expression 
is a rule like sentence in the form: 

 F after A1; A2; ...; An  (A1) 

Where F is fluent name and it can be preceded by a ¬ (not symbol in meaning 
with classical logic). Ai’s are actions. If n is 0 then it means: 

initially F 

Which means F is initially holding (it is true). Effect proposition is in the form of: 

A causes F if P1; P2; ...; Pn   (A2) 

Where A is action name and F and Pi’s are fluent names and if n is 0 then it can be 
expressed as: 

A causes F 
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5.2.2 Yale Shooting Problem: 

Let’s restate the Yale shooting problem with the language A. 

initially Alive 

initially Loaded 

Load causes Loaded 

Shoot causes ¬Alive if Loaded 

Shoot causes ¬Loaded 

5.2.3 Semantics of Language A: 

To describe the semantics of A, we will define what the Models of a domain 
description are, and when a value proposition is Entailed by a domain description. 
A State is a set of fluent names. Given a fluent name F and a state S, we say that F 
holds in S if F ∈ S; ¬F holds in S if F ∉ S. A Transition Function, called ф, is a 
mapping from the set of pairs (A; σ) into the set of states, where A is an action 
name and σ is a state,. A structure is a pair (σ0; ф), where σ0 is a state (the initial 
state of the structure), and ф is a Transition Function.  

For any structure M and any action names A1; ...; An, by MA
1;...;

A
n it is denoted that: 

ф(An; ф(An-1; ф(...; ф(A1; σ0) ...)); 

Where ф is the transition function of M, and S0 is the initial state of M. We say 
that a value proposition (A1) is true in a structure M if F holds in the MA

1;...;
A

n and 
false otherwise.  

A structure (σ0; ф) is a model of a domain D if every Value Proposition from D is 
true in (σ0; ф), and, for every action name A, every fluent name F, and every state 
σ, the following conditions are satisfied:  

1. if D includes an effect proposition describing the effect of A on F whose 
preconditions hold in σ, then F ∈ ф(A; σ); 

2. if D includes an effect proposition describing the effect of A on ¬F whose 
preconditions hold in σ, then F ∉ ф(A; σ); 

3. if D does not include such effect proposition, then F ∈ ф(A; σ), if F ∈ σ. 
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It is intuitive that there can be at most one such transition function satisfying the 
conditions that are listed here. Therefore different models of the some problem 
domain can only differ by the initial states. 

A domain description is Consistent if it has a model and Complete if it has exactly 
one model. The Yale Shooting domain is complete; its only model is defined by 
the equations: 

σ0 = {Alive};  

ф(Load; σ) = σ ∪ {Loaded};  

ф(Shoot, σ) = σ \ {Loaded; Alive}; if Loaded ∈ σ,  

           σ           otherwise; 

ф(Wait; σ) = σ; 

A value proposition is entailed by a domain description D if it is true in every 
model of D. For example, Yale Shooting Problem Domain entails: 

¬Alive after Load; Wait; Shoot; 

5.2.4 Translation from A to Logic: 

Having defined the language, lets define the translation π from A into the 
language of extended logic programs in where the Negation and Not of a literal 
are treated differently. Not is accepted as follows: when it is present in front of a 
literal then it states that the literal is evaluated to be false and it is shown by 
symbol ¬. Negation of a literal on the other hand, defined to hold when there is no 
evidence against falsification of it and it is shown with not in front of literals.  

About two different effect propositions we say that they are Similar if they differ 
only by their preconditions. The translation method is defined for any domain 
description D that does not contain similar effect propositions. This condition 
prevents, for instance, combining in the same domain such propositions as  

Let D be a domain description without similar effect propositions. The 
corresponding logic program πD uses variables of three sorts:  

1. Situation Variables: s1, s2, ... 

2. Fluent variables: f1, f2, ... 

3. Action variables: a1, a2, ... 
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Its only situation constant is S0, its fluent constants and action constants are from, 
respectively, the fluent names and action names of D. There are also some 
predicate and function symbols; the sorts of their arguments and values will be 
clear from their use in the rules below.  

The program πD will consist of the translations of the individual propositions 
from D and the four standard rules:  

Holds(f; Result(a; s)) ← Holds(f; s); not Noninertial(f; a; s)       (A3) 

¬Holds(f; Result(a; s)) ← ¬Holds(f; s); not Noninertial(f; a; s) (A4) 

Holds(f; s) ← Holds(f; Result(a; s)); not Noninertial(f; a; s)       (A5) 

¬Holds(f; s) ← Holds(f; Result(a; s)); not Noninertial(f; a; s)    (A6) 

These rules are inspired from Commonsense Law of Inertia. According to this, 
value of a fluent after an action is executed stays unaffected if it does not involved 
with the action. The rule 3 is used when it is known that fluent is holding before 
the action and rule 4 is used when it is known that fluent is not holding before the 
action. Similarly rules (A5) and (A6) are for reverse order inference of the fluents. 
The auxiliary predicate Noninertial is an Abnormality Predicate [5]. 

Lets define how π translates the value and effect propositions. First of all, if F is a 
fluent and t is a situation then Holds(¬F, t) means the same thing with ¬Holds(F, 
t). Also if A1, A2, …, An are action names then [A1, A2, …, An] stands for following: 

 Result(An; Result(An-1; …; Result(A1; S0)); …)) 

Translation of a value proposition (A1) is as follows: 

Holds(F; [A1; …; An])     (A7) 

For describing translation of an effect proposition two definitions are necessary. 
First, | F | = F and | ¬F | = F for any fluent F. This operator functions like an 
absolute value operator in algebra. Second definition is as follows: the symbol ~ 
when appear before a literal as ~Holds(Pi, s) , literal complementary of Holds(Pi, 
s) is meant. Based on these definitions effect proposition is as follows: 

Holds(F; Result(A; s)). Holds(P1; s); …; Holds(Pn; s)     (A8)  

It allows us to prove that F will hold after A, if the preconditions are satisfied. The 
second rule is:  
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Noninertial(| F |; A; s) ← not ~Holds(P1; s); …; not ~Holds(Pn; s)     (A8)  

It disables the inertia rules (A5), (A6) in the cases when F can be a 
effected by A. Without this rule, the program would be contradictory: We would 
prove, using a rule of the form (A7), which an unloaded gun becomes loaded after 
the action Load, and also, using the second of the rules (A4), that it remains 
unloaded.  

Note the use of not in (A8). Here it is wanted to disable the inertia rules not only 
when the preconditions for the change in the value of F are known to hold, but 
whenever there is no evidence that they do not hold. If, for instance, it is not 
known whether Loaded currently holds, then it is not wanted to conclude by 
inertia that the value of Alive will remain the same after Shoot. It would be wrong  
draw any conclusions about the new value of Alive. If we replaced the body of 
(A8) by Holds(P1; s); …; Holds(Pn; s), the translation would become unsound.  

Besides (A7) and (A8), the translation of (A2) contains, for each i such that 1 ≤  i 
≤ n, the rules  

Holds(Pi; s) ← ~Holds(F; s); Holds(F; Result(A; s))     (A9)  

and  

~Holds(Pi; s) ← Holds(F; Result(A; s)),  

    Holds(P1; s); …; Holds(Pi-1; s);          (A10)  

    Holds(Pi+1; s); …; Holds(Pn; s):  

The rule (A9) means the following inference: if the value of F has changed after 
performing A, then we can conclude that the preconditions were satisfied when A 
was performed. These rules would be unsound in the presence of similar 
propositions. The rule (A10) allows concluding that a precondition was false from 
the fact that performing an action did not lead to the result described by an effect 
axiom, while all other preconditions were true. 

Let’s take a look at the final representation of Yale Shooting Problem domain D 
after translations are applied and πD is obtained. Here the problem domain 
includes all the axioms 3-8 and the following rules [21]: 

¬Holds(Loaded; S0)                YS1 

Holds(Alive; S0)                YS2  

Holds(Loaded; Result(Load; s))              YS3 
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Noninertial(Loaded; Load; s)             YS4 

¬Holds(Alive; Result(Shoot; s)) ← Holds(Loaded; s)          YS5 

Noninertial(Alive; Shoot; s) ← not ¬Holds(Loaded; s)          YS6 

Holds(Loaded; s) ← Holds(Alive; s); ¬Holds(Alive; Result(Shoot; s)) YS7 

Holds(Loaded; s). Holds(Alive; Result(Shoot; s)).          YS8 

¬Holds(Loaded; Result(Shoot; s)).            YS9 

Noninertial(Loaded; Shoot; s).            YS10 

6. Comparison of Formalisms: 
Two formalisms that are reviewed here are two examples of the nonmonotonic 
methodologies. They both extend the classical logic and the default rules in it. 
They are using the atoms literals and implication operators as well as negation and 
not operators in their construct. One obvious difference is that Action Languages 
are not directly represented in logic programming notation but in a similar more 
readable context. However there is a translation scheme which converts the 
Action Language into rule database as in the classical logic. 

Their one of the first obvious difference is the concept of action and event. In 
reality, more or less they define the same notion a trigger that switches states of 
the environment. In spite of this dissimilar naming, their insight to the states is 
almost exactly the same. In both formalism there is an perception of fluent and the 
set of the valuations of these fluents define the states of the current circumstances.  

They both aim the same thing solving problems that resemble real world domains. 
In these domains, there are lots of causal occasions and they affect the fluents and 
therefore the states. Constantly actions or events occur and fluents change their 
state. But there is an obvious fact that not all of them related with each other and 
related with the absolute goal of the agent. In fact most of the time specific actions 
or events are related with specific set of fluents and states so expressing the non-
effect relationships are unnecessary and burdensome. Yet it is necessary for 
classical logic because it does not care if there are more than one model for the 
problem. However, in nonmonotonic approaches, an intuitive exactly one model 
is searched if there exists one. Action Languages and Event Calculus are in fact 
motivated with this same fallacy of the classical logic. 

Action Logic and Event Calculus are both introduce some new axioms to the 
natural deduction mechanism like axiomatic logic for covering the missing parts 
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of the classical logic. They define a set of static axioms which should be part of 
every problem domain. In other words, they are default rules for any 
representation of any problem space. They relate the elements of the new 
formalisms. These axioms construct the links between fluents states and actions or 
events. 

Another similarity between these methodologies is the usage of commonsense 
inertia rules in their additional axioms. Even though it is not so clear to find out 
the commonsense causal links of Event Calculus at first sight, it also enforces 
commonsense inertia rules using the initiative, progressive and terminative 
situations of fluents. Indeed, it is not so surprising to observe that because it is the 
most common technique to reduce the proliferation of rules for expressing for 
non-effects of actions or events 

Event Calculus additionally introduces timing of the happenings because it not 
only intends to solve and come up with a solution but also the sequence of actions 
that yielded to that solution. Therefore also the order of the events are tried to be 
solved in accordance with the solution. 

Finally the Action Language described here used the concept of negation, literal 
completion and constraint of prevention of similar rules to overcome the awesome 
frame problem while Event Calculus used predicate completion, unique names of 
axioms techniques to incorporate the solution of the frame problem. 
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7. Conclusion: 
In this study, two formalisms are represented. Their similar and different 
properties as discussed. These two formalism aims to solve the same problem but 
using slightly different approaches. This paper is written to express these 
approaches and discuss their relation to the grounds of the classical logic and 
nonmonotonic formalisms. 

This study will be a guide line for the task that will precede this work. In the 
thesis study that initiated this work, these two formalisms will be compared 
according to their expressiveness and efficiency using a real benchmark problem. 
After solving the problem with these two formalisms results are going to be 
analyzed and statistical details are going to be declared. 
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