Ceng 713, Evolutionary Computation, Lecture Notes

ANT COLONY OPTIMIZATION

Swarm Inspired Methods

- Artificial life
- Social biological systems, group behaviour
- Swarm Intelligence
- Two approaches applying swarm intelligence to optimization problems
 - Ant Colony Optimization
 - Swarm Particle Optimization

Ant Colony Optimization

- Introduced first in 1991 by M. Dorigo, V. Maniezzo, and A. Colorni.
- Inspired from Ant searching for food and finding the shortest path back home.
- Randomly exploring the search space while using the elements from the previous solutions.

Combinatorial Optimization Problems

- $C = c_1, \dots, c_n$ S $F \subseteq \wp(C)$ $z : \wp(C) \rightarrow \mathbb{R}$
- $C = c_1, \dots, c_n$ basic components
 - a solution: subset of components
 - $F \subseteq \wp(C)$ subset of feasible solutions
 - $z: \wp(C) \rightarrow \mathbb{R}$ cost function
- find S^* such that $S^* \in F$, and $z(S^*) \leq z(S) \forall S \in F$

Basic Components of AOC

- A set of concurrent computation agents (Ants)
- Each ant moves based on a stochastic local decision based on:
 - trails (globally affected)
 - attractiveness (locally affected)
- Global mechanisms
 - trail evaporation
 - daemon actions

- Ants iteratively constructs the solution by local choices from state *i* to state *j*
- At each step σ , ant k computes a set of feasible expansions $A_k^{\sigma}(i)$ from its state.
- Probability of moving from state *i* to state *j p*^k_{i j} depends on:
 - Attractiveness η_{ij} of the move
 - trail level τ_{i} of the move

Ant System

- The first idea applied
- Each move is based on a local probability value:

$$p_{i j}^{k} = \begin{cases} \frac{\tau_{i j}^{\alpha} + \eta_{i j}^{\beta}}{\sum\limits_{(i l) \notin tabu_{k}} \left(\tau_{i l}^{\alpha} + \eta_{i l}^{\beta}\right)} & \text{if } (i j) \notin tabu_{k} \\ 0 & \text{otherwise} \end{cases}$$

• Trail levels are updated based on the tour length of previous solution and evaporation:

$$\tau_{i j}(t) = \rho \tau_{i j}(t-1) + \Delta \tau_{i j}$$

$$\Delta \tau_{i j} = \sum_{k=1}^{m} \Delta \tau_{i j}^{k}$$

$$\Delta \tau_{i j}^{k} = \begin{cases} \frac{Q}{L_{k}} & \text{if ant } k \text{ uses arc } (i j) \text{ in its tour} \\ 0 & \text{otherwise} \end{cases}$$

Any System Algorithm

1. Initialization Initialize $\tau_{_{ij}}$ and $\eta_{_{ij}}$ values

2. Construction

foreach ant k (in state i) do:
 repeat
 choose the state j to move to (with prob.)
 Append the shacen mays to table

Append the chosen move to tabu_k

Until ant k has completed its solution

3. Trail update

for each ant move (i j) do: compute $\Delta \tau(i j)$ update trail matrix

4. Termination

if not end of test, go to step 2

- Ant system could not produce competitive results:
 - All solutions, good or bad, contribute on the trails.
 - Pressure of transition probability is diverse (uniform probability or single edge takeover)
 - No local improvement
- Extensions:
 - Elitist Ant System (the elite updates trails at each cycle)
 - Ant Colony System
 - Max Min Ant System (max and min pheromone)

Ant Colony System

- 3 basic changes from Ant System:
 - Pheromone, trail update (best updates)
 - State transition rule (choice of exploration vs. exploitation)
 - Hybridization
- Competitive results (ie. known best values for TSP) found.

ACS: Pheromone

- Ant System: everyone updates pheromone trails globally.
- Ant Colony System: the current best since the beginning updates trails globally at each cycle.
- Search focuses around the current best.
- Local update and evaporation: only if an ant traverses that edge.

$$\tau_{i j}(t) = \rho \tau_{i j}(t-1) + (1-\rho)\tau_{0}$$

$$\tau_{0} = \frac{1}{nL_{nn}}, \quad L_{nn}: \text{ base (greedy) solution}$$

- Unvisited edges stays at τ_o , visited gets smaller.
- Max-Min ant system uses similar upper-lower bounds.

ACS: Transition Rule

- Ant System: probability proportional to trail and attractiveness.
- Ant Colony System: *pseudo-random-proportional*.
- A choice is made among the best transition and probabilistically among others.

$$s = \begin{cases} max_{(i \ s) \notin tabu_{k}} \{\tau_{i \ j}^{\alpha} + \eta_{i \ j}^{\beta}\} & \text{if } q \leq q_{0} \\ \text{proportional to weighted values} & \text{otherwise} & (explore) \end{cases}$$

q: random value such that $0 \le q \le 1$

ACS: Hybridization

- Performing repairs on found individuals
- 2-opt, 3-opt, Lin-Kernighan
- Keep a list of preferred cities at each city (tabu search, etc).