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Schema Theorem

● Holland's schema theorem.

● Add symbol ‘*’ to binary alphabet. It matches both 0 and 1

● Assume fixed symbols are part of the solution, * is don’t 
care

● Order of a schema o(S): number of fixed symbols

● Defining length of a schema δ(S): the distance between the 
first and the last fixed symbols

● Fitness proportionate selection. Crossover (with p
c
) and 

mutation (with p
m
) assumed to be destructive

● Number of matches for S at time t in the pool: ξ(S; t)



●

● Schema Theorem:
Short, low-order, above-average schemata receive 
exponentially increasing trials in subsequent generations of a 
genetic algorithm.

● Building Block Hypothesis:
A genetic algorithm seeks near-optimal performance through 
the juxtaposition of short, low-order, high performance 
schemata called the building blocks.
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Crossover is destructive?

● Schema theorem assumes mutation and crossover are 
destructive in a schema. If both parents do not have the 
same schemata this assumption is correct.

● Find a better schema as a result of genetic operator is 
possible.

● Mixing building blocks:
Combining two building blocks together in an individual 
as a result of crossover.

● Crossover of (1***1*****) and (******0*0*) at position 
5 results in combination of two building blocks in one of 
the offsprings, (1***1*0*0*)



Mixing Building Blocks

● Single point crossover analysis

● Assume real value length 1 chromosomes containing 
infinite number of genes. (each gene is a point in the 
continuous line of chromosomes)

● Cases are:

– Case 1
Elements of the both building block are tightly placed.

– Case 2
Elements of the one building block are tightly placed 
the other is randomly placed.

– Case 3
Both elements are randomly placed



● Assume tight building blocks are single points. Mixing 
probabilities for crossover point α







Schema Context

● Fixed positions in each schema defines a partitioning of 
the search space
{*0**0*, *0**1*, *1**0*, *1**1*}

● When a building block dominates the population, the 
search space is reduced to one of these partitions.

● What about non-fixed positions? Their frequency, how 
BB's interact with the others? Context of a schema

● Context of schema H is defined as a set of conditional 
probability values p

i
 for each individual in schema H.

C H ={p ' i=
pi

∑
j∈H

p j

, i∈H }



● Flat context: all individuals have equal probability.

● Context in a population:

● Converged population: schemata come from the same
individual I.

C H ={ p ' i=2k−l , i∈H }

mi : number of individual representing schema i  in population P

C P H ={p ' i=
mi

∑
j∈H

m j

, i∈H }

C H ={ p ' i=1, i∈ I ; p ' i=0otherwise }



BB Superiority

● Survival of the BB depends on if it is superior in the 
population context.

● Assume:
f(0*****) > f(1*****), f(00****) > f(01****) > f(10****) > f(11****)
but
f(111***) is greater than all others.

● f(111***) is locally superior BB of solution 111111 

● Deceptive problems: problems having superiority of low 
order schema favors a sub-optimal solution.



Deceptive Problems

● Example, a six bit trap function

● All lower order schema cause 000000 to converge.

● Some problems are deceptive in nature. Like problems 
with high ephistasis (semantic interaction among genes).

Number of 1s

fit
ne

ss



Linkage Learning

● Genes semantically linked however positioned not close 
in genotype have a smaller probability of survival and 
mixing.

● Linkage learning methods try to discover the linkage 
among the genes so that they treated specially during 
recombination.

● Messy GA (mGA) by Goldberg (1989) introduces a 
variable length position free encoding for 
adapting/preserving linkage. Other methods include:

– LLGA (Harik)

– Symbiotic Evolution

– BOA (Pelikan), estimation of distribution.



Messy GA

● Messy encoding. Keep the position of gene in the 
chromosome together with its value:
(3,0) (2,0) (5,1) (4,0) (1,1) =  10001

● Problems: under-specification and over-specification

● Over-specification:

– Majority voting, majority wins. Deception favored?

– First come first served. Positional priority.

● Under-specification. Harder problem:

– Random pick

– k-bit perturbations. Start from k=1 and as long as k+1 
achieves better fitness, use it for k+1.



● Crossover. Cut and splice operations on chromosomes.

● Phases of mGA

– Initialization: generation of all sub-strings of a certain 
length k

– Primordial: selection of these enumerated building blocks 
against a particular template.

– Juxtapositional: selection, cut, splice, and usual GA 
operations.

● A building block order k is assumed at each epoch. Start 
with k=1 to find a competitive template. Increase k at 
each epoch.

● Fast mGA, a modification of mGA to make operations 
more efficient.



Forces in Mixing

● Phenomena occurring in EC that affects the proper 
convergence:

– Takeover: whole population consists of a single 
superior individual

– Drift: random takeover any individual.

– Cross-competition of BB's: BB's from different 
individuals not superior to each other end of with 
a poor representation of the solution.

● Mixing occurs if it finds a chance among these 
forces.



Forces in Mixing: Takeover

● Takeover time analysis. Use s tournament selection. Try 
to find # of generations for a superior individual to have 
copies through the whole the population.

● n tournaments of size s . Each superior individual can be 
selected with probability s/n . We expect to see it s times 
larger frequency at each generation.

● Mixing should occur before this.

st s=n

t s=
ln n
ln s

t sc tmix



Forces of Mixing: Mixing time

● Mixing probability of two BB's of size k with uniform 
crossover (ignore the linkage).

● If (n/2)p
c
 recombinations in one generation. Mixing time, 

the number of generations required to get a mixing is:

● Mixing time should be less than take over time:

pmix=2 1
2 

2k

,  if some bits are common ,≤2 pmix=
2
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Forces of Mixing: Drift

● Even with no selection pressure. Traits of an individual 
can have a random increase in population that is called 
drift.

● Drift time is proportional to the population size.

● Drift time should be less than takeover time:

● Not a practical consideration for n is sufficiently large.

t d=c ' n

t dt s ln s
ln n
c ' n



Forces of Mixing: Cross-competition

● Selection gives s copies of each best individual. After first 
generation, n/s independent individuals which can 
construct better individuals.

● If selection pressure is a significant fraction of the 
population size, we may expect to have cross-competition 
failure.

p0 : ratio of bit positions already fixed correctly

1− p0
n / s :  correct alleleles that does not exist in the population

[1−1− p0
n / s
] l  alleles covered by the population

1− l[1−1− p0
n / s
] l , :failure ratio 

s
n ln 1− p0

ln 



Forces of Mixing Revisited

● Takeover vs. mixing:

● Drift: 

● Cross-competition:

n ln nc
2 k ln s

pc

ln s
ln n
c ' n

s
n ln 1− p0

ln 



Mixing Results

● Thierens, 1999, EC 7(4).



● Selection pressure vs. crossover probability.



● Building block size vs. population size



● Goldberg, Deb, Thierens, 1992.


