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Schema Theorem

Holland's schema theorem.
Add symbol **’ to binary alphabet. It matches both 0 and 1

Assume fixed symbols are part of the solution, * is don't
care

Order of a schema o(S): number of fixed symbols

Defining length of a schema §(S): the distance between the
first and the last fixed symbols

Fitness proportionate selection. Crossover (with p ) and
mutation (with p ) assumed to be destructive

Number of matches for S at time ¢ in the pool: &(S; ¢



. E(S.t) f(S)|, p.S(S)
E(S,t+1)= . 1— = —p,o(S)

* Schema Theorem:
Short, low-order, above-average schemata receive
exponentially increasing trials in subsequent generations of a
genetic algorithm.

 Building Block Hypothesis:
A genetic algorithm seeks near-optimal performance through
the juxtaposition of short, low-order, high performance
schemata called the building blocks.



Crossover is destructive?

* Schema theorem assumes mutation and crossover are
destructive in a schema. If both parents do not have the
same schemata this assumption is correct.

* Find a better schema as a result of genetic operator is
possible.

 Mixing building blocks:
Combining two building blocks together in an individual
as a result of crossover.

 Crossover of (1***1*****) gnd (******Q*(0*) at position

5 results in combination of two building blocks in one of
the offsprings, (1***1*0* 0*)



Mixing Building Blocks

Single point crossover analysis

Assume real value length 1 chromosomes containing
infinite number of genes. (each gene is a point in the
continuous line of chromosomes)

Cases are:

- Case 1
Elements of the both building block are tightly placed.

- Case 2

Elements of the one building block are tightly placed
the other is randomly placed.

- Case 3
Both elements are randomly placed



* Assume tight building blocks are single points. Mixing
probabilities for crossover point «
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Schema Context

* Fixed positions in each schema defines a partitioning of

the search space
{*O**O* *O**l* *1**0* *1**1*}

 When a building block dominates the population, the
search space is reduced to one of these partitions.

 What about non-fixed positions? Their frequency, how
BB's interact with the others? Context of a schema

 Context of schema H is defined as a set of conditional
probability values p. for each individual in schema 4.
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* Flat context: all individuals have equal probability.
C(H)=p'=2" ieH

 Context in a population:

m.: number of individual representing schema i in population P
( \

m; .
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Z m;
\ jeH )
 Converged population: schemata come from the same
individual 1.
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BB Superiority

* Survival of the BB depends on if it is superior in the
population context.

* Assume:
but
f(111***) is greater than all others.

* f{111***)is locally superior BB of solution 111111

* Deceptive problems: problems having superiority of low
order schema favors a sub-optimal solution.



Deceptive Problems

« Example, a six bit trap function

fithess

Number of 1s
* All lower order schema cause 000000 to converge.

* Some problems are deceptive in nature. Like problems
with high ephistasis (semantic interaction among genes).



Linkage Learning

* Genes semantically linked however positioned not close
in genotype have a smaller probability of survival and
mixing.

* Linkage learning methods try to discover the linkage
among the genes so that they treated specially during
recombination.

* Messy GA (mGA) by Goldberg (1989) introduces a
variable length position free encoding for
adapting/preserving linkage. Other methods include:

- LLGA (Harik)
- Symbiotic Evolution
- BOA (Pelikan), estimation of distribution.



Messy GA

Messy encoding. Keep the position of gene in the
chromosome together with its value:
(3,0) (2,0) (5,1) (4,0) (1,1) = 10001

Problems: under-specification and over-specification
Over-specification:

- Majority voting, majority wins. Deception favored?

- First come first served. Positional priority.
Under-specification. Harder problem:

- Random pick

- k-bit perturbations. Start from k=1 and as long as k+1
achieves better fitness, use it for k+1.



* Crossover. Cut and splice operations on chromosomes.
* Phases of mGA

- Initialization: generation of all sub-strings of a certain
length k

- Primordial: selection of these enumerated building blocks
against a particular template.

- Juxtapositional: selection, cut, splice, and usual GA
operations.

* A building block order k is assumed at each epoch. Start
with k=1 to find a competitive template. Increase k at
each epoch.

* Fast mGA, a modification of mGA to make operations
more efficient.



Forces in Mixing

* Phenomena occurring in EC that affects the proper
convergence:

- Takeover: whole population consists of a single
superior individual

- Drift: random takeover any individual.

- Cross-competition of BB's: BB's from different
individuals not superior to each other end of with
a poor representation of the solution.

* Mixing occurs if it finds a chance among these
forces.



Forces in Mixing: Takeover

 Takeover time analysis. Use s tournament selection. Try
to find # of generations for a superior individual to have
copies through the whole the population.

 n tournaments of size s . Each superior individual can be
selected with probability s/n . We expect to see it s times
larger frequency at each generation.

StS:I’l

_In(n)

In(s)

S

* Mixing should occur before this. #;>c¢fy



Forces of Mixing: Mixing time

* Mixing probability of two BB's of size k with uniform

crossover (ignore the linkage).
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- If (n/2)p_recombinations in one generation. Mixing time,
the number of generations required to get a mixing is:
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* Mixing time should be less than take over time:
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Forces of Mixing: Drift

Even with no selection pressure. Traits of an individual
can have a random increase in population that is called
drift.

Drift time is proportional to the population size.

— /
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Drift time should be less than takeover time:

In(n)

c'n

Not a practical consideration for n is sufficiently large.

t,<t, In(s)<



Forces of Mixing: Cross-competition

* Selection gives s copies of each best individual. After first

generation, n/s independent individuals which can
construct better individuals.

D, ratio of bit positions already fixed correctly
(1—p,)""* - correct alleleles that does not exist in the population
[1—(1—p,)"*]I alleles covered by the population
(1—x)l<[1—(1—=p,)""]I ,:failure ratio
nin(1—p,)
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* If selection pressure is a significant fraction of the

population size, we may expect to have cross-competition
failure.



Forces of Mixing Revisited

 Takeover vs. mixing:
2" In ()
P

nln(n)>c

 Drift:
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* Cross-competition:
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Mixing Results

 Thierens, 1999, EC 7(4).
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* Selection pressure vs. crossover probability.
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* Building block size vs. population size
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* Goldberg, Deb, Thierens, 1992.

Ideal failure boundaries Simulation results
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