### Ceng 713, Evolutionary Computation, Lecture Notes

# GENETIC ALGORITHMS

# Introduction

- Holland's GA
  - bitarray representation
  - fitness proportionate selection for mating
  - single point crossover, mutation
  - inversion operator introduced
- Currently there are many varieties with nonbinary encodings, different selection strategies and operations.

# Why it works?

- Schema Theorem (Holland): Short, loworder, above-average schemata (sequence of matching bits in a solution candidate) receive exponentially increasing trials in subsequent generations of a genetic algorithm.
- Building Block Hypothesis (Goldberg): A genetic algorithm seeks near-optimal performance through the juxtaposition of short, low-order, high performance schemata called the building blocks.

- If your problem is somewhat decomposable into small subproblems called building blocks, GA solves it better.
- Many design choices affect GA's capability of:
  - Introduction of new building blocks
  - Mixing existing building blocks from different individuals
  - Preserving existing building blocks.
- **Deceptive problems:** problems where combining high fit building blocks leads to a non-optimal solution.

# Encoding

- Genotype: how it is represented, Phenotype: what it represents
- Example:

Genotype: a binary sequence of size nPhenotype: an array of size n/8. Each byte represents an element of a vector of ASCII characters.

- Encoding should:
  - Favor building block growth
  - Preserve locality.
  - Be closed under genetic operators (crossover of two genotypes come up with a genotype representing a valid phenotype)

# **General GA Structure**

Initialization

 $I_{\lambda}$ : parent population,  $I_{\mu}$ : offspring population,

 $p_t$  population at generation t

 $\Theta_c$ : crossover probablity,  $\Theta_m$ : mutation probability

 $t \leftarrow 0$ 

 $p_0 = random population()$ 

while (¬ termination condition) -

$$I_{\mu} \leftarrow selecttomate(p_t, \Theta_c)$$

 $I_{\kappa} \leftarrow crossover(I_{\mu}) \blacktriangleleft single$  $I_{\lambda} \leftarrow mutate(I_{\kappa}, \Theta_{m})$ 

 $p_{t+1} \leftarrow select to survive(I_{\mu}, I_{\lambda}) \blacktriangleleft t \leftarrow t+1$ 

fixed # iterations or local optima
sexual selection
single/multi point, uniform

ecological selection, elitism, selection from  $\lambda$  only, or  $(\mu + \lambda)$ 

# Initialization

- Create a random initial population
- Although mutation operation provide some genetic variety in the process, it cannot ensure that the parts of the solution exists in the population.
- Population size:
  - Sample quality of the search space
  - complexity of the GA
- Assure all building blocks of some degree are available in the initial population.

### Crossover

- Combination of gene traits of two individuals to produce one or two offsprings. (Meiosis)
- single point, n-points (n>1), and uniform crossover.
- depending on encoding, different types of crossovers exists for encoding integrity. Like permutation preserving crossovers OX, PMX.



$$k \leftarrow random(1..n)$$
  
$$\boldsymbol{o_1[i]} = \begin{cases} \boldsymbol{p_1[i]} & \text{if } i \le k \\ \boldsymbol{p_2[i]} & \text{otherwise} \end{cases}, \qquad \boldsymbol{o_2[i]} = \begin{cases} \boldsymbol{p_2[i]} & \text{if } i \le k \\ \boldsymbol{p_1[i]} & \text{otherwise} \end{cases}$$



$$s \leftarrow randomset(1..n,k), \quad sw = true$$
  
for  $i=1,2,...,n$   
if  $i \in s$  then  $sw \leftarrow \neg sw$   
 $o_1[i] = \begin{cases} p_1[i] & \text{if } sw \\ p_2[i] & \text{otherwise} \end{cases}, \quad o_2[i] = \begin{cases} p_2[i] & \text{if } \neg sw \\ p_1[i] & \text{otherwise} \end{cases}$ 

### uniform crossover









parents

offsprings

for 
$$i=1,2,...,n$$
  
 $sw \leftarrow random(\{true, false\})$   
 $o_1[i] = \begin{cases} p_1[i] & \text{if } sw \\ p_2[i] & \text{otherwise} \end{cases}$ ,  $o_2[i] = \begin{cases} p_2[i] & \text{if } \neg sw \\ p_1[i] & \text{otherwise} \end{cases}$ 

## Mutation

- Due to errors occurred in meiosis, some codons copied with random values.
- Genetic algorithms, some gene positions are changed with a random probability. Some algoritms introduce their own controlled mutations like swaps, insertions, deletions.



if  $random(0..1) \le \Theta_m$  then  $p_i \leftarrow \neg p_i$ 

# Selection

- Selection for mating vs. selection for survival.
- Mating strategies:
  - Truncation selection
  - Fitness proportionate selection (roulette wheel algorithm)
  - Rank selection
  - Tournament selection
- Survival based on either:
  - $I_{\lambda}$  will be the new population
  - Selection based on  $I_{\mu}+I_{\lambda}$ , some best members of  $I_{\mu}$  and members of  $I_{\lambda}$ , or simply selection among the mixed population

### Fitness proportionate selection:

 $f_i$ : fitness of individual *i*,  $p_i$ : probability of individual *i* selected

$$p_i = \frac{f_i}{\sum_{j=1}^n f_j}$$

- Roulette Wheel algorithm:
  - Vector based
  - Cumulative Distribution
- Selection pressure: ratio of best individual's selection probability to average selection probability.
- Selection pressure and probability distribution cannot be adjusted.

• Vector based roulette-wheel:

$$\Delta p \leftarrow 0; j \leftarrow 1$$
  

$$\Delta M = \frac{1}{M}$$
  
for  $i = 1, 2, ..., N$   

$$\Delta p \leftarrow \Delta p + p_i$$
  
while  $\Delta p > \Delta M$   
 $v_j \leftarrow i$   
 $\Delta p \leftarrow \Delta p - \Delta M$   
 $j \leftarrow j + 1$ 

$$f_1=6$$
,  $f_2=3$ ,  $f_3=12$ ,  $f_4=6$ ,  $f_5=3$   
 $p_1=0.2$ ,  $p_2=0.1$ ,  $p_3=0.4$ ,  $p_4=0.2$ ,  $p_5=0.1$ 

| 1 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 5 |
|---|---|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|---|---|

 $s \leftarrow random(1..M)$ select  $v_s$  • Cumulative Distribution roulette-wheel:

 $s \leftarrow random(0,1)$ search  $j \ni v_{j-1} \le s < v_j$ select j

| 0.2 0.3 | 0.7 | 0.9 | 1.0 |
|---------|-----|-----|-----|
|---------|-----|-----|-----|

### Rank selection:

individuals are sorted according to their fitness. selection probability of an individual is a function of their rank.

• The probability distribution is completely adjustable:



### Tournament selection:

Pick two individuals at random and choose the better one to mate.

• Simple, fitness pressure can be controlled by the size of the tournament (best of 3,4,5 etc.)