
CEng 713, Evolutionary Computation, Lecture Notes

Genetic Genetic 
ProgrammingProgramming



Introduction

● Earlier ideas in 70's, 80's
● Developed in 90's, J. Koza
● J. Koza, Genetic Programming: On the 

Programming of Computers by Natural Selection. 
MIT Press, 1992.

● Can evolutionary approaches can be used to write 
partial or complete computer programs?



Application Areas

● Classifier systems,
● Symbolic regression,
● Grammar induction,
● Engineering design, i.e. electronics, mechanics.
● In general, most machine learning tasks involving 

supervised or reinforcement learning.



GP in summary

● Search space: partial computer programs, 
expressions, complex data structures.

● Representation: Usually trees. Linear and graph 
respresentations may also be defined. Usually 
genotype is very similar to phenotype.

● Genetic operators: Special operators involving 
manipulation of data structures.



Tree Representation

● Function set for intermediate nodes.
● Terminal set for leaf nodes.
● More suitable to functional P.L.'s, evolving 

expressions, decision trees, classifier systems...
● Examples:

– Arithmetic formula

– Locigal formula

– Program
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●

● Usually GP expressions are not typed. Any function 
get any other expression as parameters. 

● Strongly typed GP is proposed to deal with such 
problems.

t∈T (terminals),   f ∈F (functions)
t is a correct expression
f e1,e2, ... , en  is a correct expression iff f ∈F ,arity  f =n ,  and  

∀ i , ei  is a correct expression



Genetic Process

● Initialization:

–  Involves creation of a tree population with internal 
function nodes and leaf terminal  nodes randomly.

– A depth limit is forced during random operation.

– Generation of full trees vs growing trees. (regular 
shape vs rregular shape)

– The ramped half-and-half method: use different tree 
depth classes, and for each class create half of the 
population full and half as grown.



● Mutation:

– Pick a random node and its subtree and replace it 
with a random subtree.
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● Crossover:

– Pick a random subtree from each parent. Divide each 
into subtree and the root subtree partitions. Swap 
and combine each root subtree with the others 
subtree.
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Linear Representation

● Define an alphabet of machine codes for possible 
operations in the language. (AIMGP)

● An index memory or set of registers.
● Represent each program as a sequence of machine 

codes.
● Machine codes are executed with memory access to 

evaluate a genome.
● Use special mutations (operand/operator 

mutations) and standard crossover operation like 
any GA with integer representation.



Graph Representations (PADO)

● PADO (Parallel Algorithm Discovery Orchestration)
● A graph of nodes connected to each other with 

edges denoting program flow. 
● Each node executes an instruction and based on 

some decision expression follows one of the 
outgoing edges.

● Indexed memory access.
● Special mutation and crossover operations are 

required.



● Stack based basic set of
commands. Action set
and branching decision to
another node.

● Mini program and a library
of Automatically Defined
Functions

● Crossover: partition each parent into two classes. Mark 
internal, outgoing and incoming edges of each class. 
Crossover classes with preserving internal edges and 
combining incoming/outgoing edges.



Problems of GP

● Crossover and mutation can be too destructive.
● Uncontrolled tree growth 'Survival of the Fattest'
● Intelligent crossover operations proposed.
● Evaluating fitness: too slow, executing programs or 

simulations, halting problem.



Improving Crossover
● %75 of the offsprings fitnesses are less than half of the 

fitness of their parents!

● Biology:

– Speciation, only species of same kind reproduce

– Semantics preserving. A phenotype is crossovered with same 
phenotype.

– Homologous, structure preserving. Gene positions are crossed-
over at codons and gene boundaries are marked.

● Simple GP:

– Any subtree is cross-overed with any other.

– New subtree can be put in any context. No similarity.

– No speciation. A random individual can be anything.



Brood Recombination

● Attehberg, 1994.
● Make N crossovers instead of 1. Take best 2 of 2N 

offsprings according to their fitnesses.
● Calculate N times more fitnesses but a higher 

chance to find a good crossover.



Intelligent Crossover



Different Tree Operators
● Mutations:

– Point mutation: single node exchanged with a random 
terminal/non terminal value

– Permutation: arguments of a terminal node is shuffled

– Hoist: A subtree is taken as a whole individual

– Expansion mutation: A terminal node is replaced with a random 
subtree.

– Colapse subtree mutation: Subtree is replaced with a terminal.

– Subtree mutation: A subtree is replaced by another random 
subtree.

– Gene duplication: Subtree substituted for random terminal.



● Crossovers:

– Subtree exchange: exchange two random subtrees from 
individuals.

– Self crossover: exchange subtrees in the individual itself.

– Module crossover: exchange modules between individuals.

– Context-preserving crossovers: exchange subtrees if structure 
matches with some degree.



Improving the Evolvability

● Modularization: Logically closed entities working as 
a black box having interface with other modules.

● The solution consists of one or more modules and 
the main body.

● Modules -> building blocks. 
● Shorter programs -> less destruction probability.
● Types:

– Automatically Defined Functions (Koza, 1994)

– Encapsulation (Koza, 1992)

– Module Acquisition (Angeline & Pollack, 1992)



Automaticall Defined Functions

● Each individual consists of:

– Result producing branch

– Function defining branch
● Usually structure is fixed (number of 

functions/arities etc)
● Seperate genetic operators applied for function(s) 

and body in an isolated manner.
● Architecture altering methods can be applied but  

probably not useful.



Encapsulation

● Select a non-terminal node, define and bind it as a 
new terminal globally.

● If subtree contains usefull operations it is 
beneficial.



Module Acquisition

● A subtree is selected and part of the tree up to a 
depth level is defined as module. The part outside 
of this subtree is considered as arguments.

● Also referred to as compression.
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Strongly Type Genetic Programming

● Programming Language analogy: a strict type 
system in representation helps in reproduction of 
valid individuals.

● Each subtree has a anotated type. Crossover and 
mutation preserve types. ;
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