
CEng 713, Evolutionary Computation, Lecture Notes

Genetic Genetic
ProgrammingProgramming

Introduction

● Earlier ideas in 70's, 80's
● Developed in 90's, J. Koza
● J. Koza, Genetic Programming: On the

Programming of Computers by Natural Selection.
MIT Press, 1992.

● Can evolutionary approaches can be used to write
partial or complete computer programs?

Application Areas

● Classifier systems,
● Symbolic regression,
● Grammar induction,
● Engineering design, i.e. electronics, mechanics.
● In general, most machine learning tasks involving

supervised or reinforcement learning.

GP in summary

● Search space: partial computer programs,
expressions, complex data structures.

● Representation: Usually trees. Linear and graph
respresentations may also be defined. Usually
genotype is very similar to phenotype.

● Genetic operators: Special operators involving
manipulation of data structures.

Tree Representation

● Function set for intermediate nodes.
● Terminal set for leaf nodes.
● More suitable to functional P.L.'s, evolving

expressions, decision trees, classifier systems...
● Examples:

– Arithmetic formula

– Locigal formula

– Program

x 2
y3

x2

 p∧q⇒q⇔ p

i=0
while (i<100) {
 i=i+i;
}

x 2
y3

x2

+

x *

/ ^

2 +

y 3

x 2

⇒

⇔∧

p q q p

 p∧q⇒q⇔ p

;

while

< =

i 100 i

i=0
while (i<100) {
 i=i+i;
}

=

i 0

+

i 1

●

● Usually GP expressions are not typed. Any function
get any other expression as parameters.

● Strongly typed GP is proposed to deal with such
problems.

t∈T (terminals), f ∈F (functions)
t is a correct expression
f e1,e2, ... , en is a correct expression iff f ∈F ,arity f =n , and

∀ i , ei is a correct expression

Genetic Process

● Initialization:

– Involves creation of a tree population with internal
function nodes and leaf terminal nodes randomly.

– A depth limit is forced during random operation.

– Generation of full trees vs growing trees. (regular
shape vs rregular shape)

– The ramped half-and-half method: use different tree
depth classes, and for each class create half of the
population full and half as grown.

● Mutation:

– Pick a random node and its subtree and replace it
with a random subtree.
+

x *

/ ^

2 +

y 3

x 2

to be mutated
*

y y
random tree

+

x *

^

x 2

*

y y

● Crossover:

– Pick a random subtree from each parent. Divide each
into subtree and the root subtree partitions. Swap
and combine each root subtree with the others
subtree.

+

x *

/ ^

2 +

y 3

x 2

crossover pt.

*

- *

x *

x 3

y y
crossover pt.

*

-

x *

x 3

+

x *

^

x 2

*

y y

/

2 +

y 3

parents:

x 2
y3

⋅x2

 x− x⋅3⋅ y⋅y

offsprings:
x y⋅y⋅x2

 x− x⋅3⋅ 2
y3

Linear Representation

● Define an alphabet of machine codes for possible
operations in the language. (AIMGP)

● An index memory or set of registers.
● Represent each program as a sequence of machine

codes.
● Machine codes are executed with memory access to

evaluate a genome.
● Use special mutations (operand/operator

mutations) and standard crossover operation like
any GA with integer representation.

Graph Representations (PADO)

● PADO (Parallel Algorithm Discovery Orchestration)
● A graph of nodes connected to each other with

edges denoting program flow.
● Each node executes an instruction and based on

some decision expression follows one of the
outgoing edges.

● Indexed memory access.
● Special mutation and crossover operations are

required.

● Stack based basic set of
commands. Action set
and branching decision to
another node.

● Mini program and a library
of Automatically Defined
Functions

● Crossover: partition each parent into two classes. Mark
internal, outgoing and incoming edges of each class.
Crossover classes with preserving internal edges and
combining incoming/outgoing edges.

Problems of GP

● Crossover and mutation can be too destructive.
● Uncontrolled tree growth 'Survival of the Fattest'
● Intelligent crossover operations proposed.
● Evaluating fitness: too slow, executing programs or

simulations, halting problem.

Improving Crossover
● %75 of the offsprings fitnesses are less than half of the

fitness of their parents!

● Biology:

– Speciation, only species of same kind reproduce

– Semantics preserving. A phenotype is crossovered with same
phenotype.

– Homologous, structure preserving. Gene positions are crossed-
over at codons and gene boundaries are marked.

● Simple GP:

– Any subtree is cross-overed with any other.

– New subtree can be put in any context. No similarity.

– No speciation. A random individual can be anything.

Brood Recombination

● Attehberg, 1994.
● Make N crossovers instead of 1. Take best 2 of 2N

offsprings according to their fitnesses.
● Calculate N times more fitnesses but a higher

chance to find a good crossover.

Intelligent Crossover

Different Tree Operators
● Mutations:

– Point mutation: single node exchanged with a random
terminal/non terminal value

– Permutation: arguments of a terminal node is shuffled

– Hoist: A subtree is taken as a whole individual

– Expansion mutation: A terminal node is replaced with a random
subtree.

– Colapse subtree mutation: Subtree is replaced with a terminal.

– Subtree mutation: A subtree is replaced by another random
subtree.

– Gene duplication: Subtree substituted for random terminal.

● Crossovers:

– Subtree exchange: exchange two random subtrees from
individuals.

– Self crossover: exchange subtrees in the individual itself.

– Module crossover: exchange modules between individuals.

– Context-preserving crossovers: exchange subtrees if structure
matches with some degree.

Improving the Evolvability

● Modularization: Logically closed entities working as
a black box having interface with other modules.

● The solution consists of one or more modules and
the main body.

● Modules -> building blocks.
● Shorter programs -> less destruction probability.
● Types:

– Automatically Defined Functions (Koza, 1994)

– Encapsulation (Koza, 1992)

– Module Acquisition (Angeline & Pollack, 1992)

Automaticall Defined Functions

● Each individual consists of:

– Result producing branch

– Function defining branch
● Usually structure is fixed (number of

functions/arities etc)
● Seperate genetic operators applied for function(s)

and body in an isolated manner.
● Architecture altering methods can be applied but

probably not useful.

Encapsulation

● Select a non-terminal node, define and bind it as a
new terminal globally.

● If subtree contains usefull operations it is
beneficial.

Module Acquisition

● A subtree is selected and part of the tree up to a
depth level is defined as module. The part outside
of this subtree is considered as arguments.

● Also referred to as compression.

;

while

<

i 100

=

i 0

i 1

;

while

< =

i 100 i

=

i 0

+

i 1

M
M

Strongly Type Genetic Programming

● Programming Language analogy: a strict type
system in representation helps in reproduction of
valid individuals.

● Each subtree has a anotated type. Crossover and
mutation preserve types. ;

while

<

i 100

stmt

bool

num num

stmt

=

i 0
l-val num

stmt

=

i
lval num

+

i 1
numnum

